Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Электроника и электротехника Работа электрических машин и аппаратов Асинхронный двигатель Элементы зонной теории твердого тела Проводниковые материалы Полупроводниковые материалы

Расчет мостового выпрямителя с фильтром

Исходными данными для расчета выпрямителя являются:

Uно – среднее значение выпрямленного напряжения на нагрузке;

Iо – среднее значение выпрямленного тока;

U1 – напряжение сети;

Кп.вых – коэффициент пульсаций выпрямленного напряжения на нагрузке.

Рис. 2.1. Схема мостового выпрямителя с фильтром

В приводимых ниже расчетах напряжение выражается в вольтах, ток – в миллиамперах, сопротивление – в Омах, емкость – в микрофарадах, коэффициент пульсаций в процентах.

Произведем расчет со следующими данными.

Дано: Uно = 4 В; Iо = 2 А; U1 = 220 В; Кп.вых = 2 %.

2.1. ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА

1. Для выбора типа диодов, определяют обратное напряжение на вентиле

Uобр =1,5·Uо = 1,5 · 1,2 · 4 = 7,2 В,

где Uо = 1,2 · Uно – напряжение на входе сглаживающего фильтра должно быть больше напряжения на нагрузке, т.к. учитывает потери напряжения на фильтре. 

Средний ток через вентиль

Iа ср = 0,5·Iо = 0,5 · 2 = 1 А.

Выбираем диоды КД130АС с Iср = 3 А; Uобр.М = 50 В

Выбор диода производится по этим двум параметрам Iа.ср и Uобр. Из справочника выписывают максимальное обратное напряжение, средний ток и внутреннее сопротивление вентиля Ri. Если величины Ri в справочнике нет, то его легко рассчитать. При падении напряжения на кремниевом диоде UД = 0,7 В величина Ri = UД / Iа ср = 0,7 / 1 = 0,7 Ом.

2. Расчет трансформатора при Uо = 1,2 · Uно = 1,2 · 4 = 4,8 В:

Определяют сопротивление трансформатора

1132 Ом.

Напряжение на вторичной обмотке трансформатора

 11,5 В.

Токи обмоток

2,9 A, 

 0,18 A.

Вычисляется габаритная мощность трансформатора, которая для двухполупериодной схемы определяется выражением

57 В∙А.

Далее находится произведение площади сечения сердечника трансформатора Qc на площадь окна сердечника Q0, которое в зависимости от марки провода обмотки равно, см4: 

QС Q0 = 1,6·Pг для провода марки ПЭЛ;

QС Q0 = 2,0·Pг для провода марки ПЭШО;

QС Q0 = 2,4·Pг для провода марки ПШД.


Таблица 3.1

Тип

пластины

Размеры

Пределы

Qc Q0, см4

ширина

среднего

стержня

а, см

ширина

окна

b, см

высота

окна

h, см

площадь

окна

Q0 = b h,

см2

Ш-10

Ш-10

Ш-10

Ш-12

УШ-12

Ш-12

Ш-14

Ш-14

Ш-15

Ш-16

УШ-16

Ш-18

Ш-19

Ш-20

Ш-20

УШ-22

Ш-25

Ш-25

Ш-28

УШ-30

Ш-32

УШ-35

УШ-40

1,0

1,0

1,0

1,2

1,2

1,2

1,4

1,4

1,5

1,6

1,6

1,8

1,9

2,0

2,0

2,2

2,5

2,5

2,8

3,0

3,2

3,5

4,0

0,5

0,65

1,2

0,6

0,8

1,6

0,7

0,9

1,35

0,8

1,0

0,9

1,2

1,0

1,7

1,4

2,5

3,15

1,4

1,9

3,6

2,2

2,6

1,5

1,8

3,6

1,8

2,2

4,8

2,1

2,5

2,7

2,4

2,8

2,7

3,35

3,0

4,7

3,9

6,0

5,8

4,2

5,3

7,2

6,15

7,2

0,75

1,17

4,32

1,08

1,76

7,68

1,47

2,25

3,65

1,92

2,8

2,43

4,02

3,0

7,99

5,46

15

18,3

5,88

10,1

25,9

13,5

18,7

0,75-1,5

1,17-2,34

4,32-8,64

1,56-3,12

2,53-5,06

11,1-22,2

2,88-5,76

4,41-8,82

8,21-16,4

4,91-9,82

7,17-14,3

7,87-15,7

14,5-29

12-24

32-64

26,4-52,8

93,7-180,7

114-228

46,5-93

91-182

265-530

165-330

300-600

Для провода ПЭЛ

QС Q0 = 1,6 · Pг = 1,6 · 57 = 91 см4.

Из таблицы 3.1, в которой приведены основные данные типовых Ш-образных пластин, по значению QС Q0 выбирают тип пластины и выписывают все ее параметры.

Выбираем пластины УШ-30 с а = 3 см; b = 1,9 см; h = 5,3 см; Q0 = b h = 10,1 см2.

При этом получают

QС = (QС Q0) / Q0 = 91 / 10,1 = 9 см2.

Необходимая толщина пакета пластин c = QС / a = 9 / 3 = 3 см.

Отношение с/а рекомендуется брать в пределах 1…2. Если оно выйдет за эти пределы, то необходимо выбрать другой тип пластин.

Определяют число витков w и толщину провода d первичной и вторичной обмоток трансформатора при плотности тока в обмотках j = 3 А/мм2:

d = 1,13 (I/j)1/2 = 1,13(I/3)1/2 = 0,65·I1/2,

w1 = 48 U1/ QС = 48 · 220 / 9 = 1173 вит.

d1 =0,65·I11/2 = 0,65 · 0,18½ = 0,28 мм,

w2 = 54 U2/ QС = 54 · 11,5 / 9 = 69 вит.,

d2 =0,65·I21/2 = 0,65· 2,91/2 = 1,1 мм.

3. Расчет фильтра. Емкость конденсатор на входе фильтра

Со =30·Iо / Uo = 30 · 2· 4,8 = 288 мкФ.

Выбирают электролитические конденсаторы по величине емкости и номинальному напряжению, причем Uс ≥ 1,2 Uo B.

Коэффициент пульсаций выпрямленного напряжения на выходе фильтра

Кп.вх =300·Iо / (Uo· Co) = 300 · 2/(4,8 · 288) = 0,43 %.

Необходимый коэффициент сглаживания фильтра

q = Кп.вх / Кп.вых = 0,43 / 2 = 0,215.

В данной схеме выбран двухзвенный LC-фильтр. Коэффициент сглаживания одного звена

qзв =(q)1/2 = 0,2151/2 = 0,46.

Определяют произведение LфCф по формуле 

Lф Сф=2,5(qзв +1) = 2,5(0,45+1) = 3,63 Гн∙мкФ.

Задаются емкостью Сф так, чтобы индуктивность дросселя фильтра не превышала 5 – 10 Гн и определяют индуктивность дросселя. Принимаем Lф = 7 Гн.

Сф = 3,63 / 7 = 0,5 мкФ.

Находят сечение сердечника QС, число витков w и диаметр провода d обмотки дросселя:

Qс = Lф Io2/2 = 7· 22 / 2 = 14 см2;

w = 4·102/ Io =4·102/ 2 = 200 витков;

d = 0,65·Iо1/2 = 0,65·21/2 = 0,92 мм.

Сечение обмотки

Qw =w·d2/1000 = 200 · 0,922/100 = 1,92 см2.

QС QW = 14·1,92 = 27 см4.

По произведению QС QW из таблицы 3.1 выбирают тип сердечника и выписывают все параметры. С учетом объема, занимаемого стенками каркаса и изоляционными прокладками, сечение окна должно быть несколько больше сечения обмотки.

Выбираем пластины Ш-19 с а = 1,9 см; b = 1,2 см; h = 3,35 см; Q0 = b h = 4,02 см2.

4. Проверяют значение выпрямленного напряжения на нагрузке, для чего определяют среднюю длину витка обмотки lw и сопротивление провода обмотки Rw:

lw =π·(a + b) = π·(1,9 + 1,2) = 9,73 см;

Rw =2·w·lw/(104 d2) = 2·200·9,73 / (104 ·0,922) = 0,46 Ом.

При этом падение напряжение на двухзвенном фильтре

Uф =Rw · I0 = 0,46 · 2 = 0,92 B.

Напряжение на нагрузке

Uно = Uo – Uф = 4,8 – 0,92 = 3,88 B.

Если напряжение на нагрузке получается меньше заданного, то необходимо провести корректировочный расчет. Простейшим является увеличение, до необходимого значения, диаметра провода обмотки дросселя. Увеличение диаметра провода приведет к уменьшению сопротивления обмотки Rw, что в свою очередь вызовет уменьшение падения напряжения на фильтре Uф. При этом необходимо проверить, может ли новый провод разместиться в окне выбранного сердечника дросселя фильтра.

Расчет однотактного каскада усилителя мощности

Расчет компенсирующего стабилизатора постоянного напряжения Схема компенсационного стабилизатора напряжения Схема содержит три основных элемента: регулирующий элемент на транзисторах VТ1 и VТ2, усилительный элемент (усилитель постоянного тока) на транзисторе VТ3 и источник опорного напряжения на стабилитронах. Собственно регулирующим элементом является транзистор VТ1, а транзистор VТ2 является согласующим элементом между большим выходным сопротивлением усилителя постоянного тока и малым входным сопротив­лением регулирующего транзистора VТ1.

Расчет управляемого тиристорного выпрямителя

Расчет выпрямителя источника питания Выпрямитель преобразует переменное напряжение, полученное от сетевого трансформатора, в постоянное. Точнее сказать, выпрямитель выдает не постоянное, а пульсирующее напряжение, которое потом сглаживают фильтром. Для преобразования служат нелинейные элементы, называемые вентилями, которые бывают электронными (электровакуумные диоды, кенотроны), ионными (газонаполненные лампы: тиратроны, газотроны), полупроводниковыми (полупроводниковые диоды и диодные сборки). Последние практически полностью вытеснили другие вентили.

Двухполупериодные выпрямители Выпрямитель с выводом средней точки вторичной обмотки трансформатора.

Расчет трансформаторов

Методика расчета трансформаторов Рассчитать трансформатор - это значит определить размеры магнитопровода, диаметры проводов и числа витков обмоток при известных трансформируемых напряжениях и мощностях. Изменением размеров окна и сечения магнитопровода можно получить ряд вариантов конструкции одного и того же трансформатора. При изготовлении трансформаторов в расчете часто приходится исходить из наличия имеющегося магнитопровода или пластин для его сборки.

Система схемотехнического моделирования Electronics Workbench предназначена для моделирования и анализа электрических схем. Программа Electronics Workbench позволяет моделировать аналоговые, цифровые и цифро-аналоговые схемы большой сложности. Имеющиеся в программе библиотеки включают в себя большой набор широко распространенных электронных компонентов. Есть возможность подключения и создания новых библиотек компонентов.

Рассмотрим алгоритм решения на примере цепи Если по условию задачи внутренним сопротивлением источников (r01, r02 т. д.) пренебречь нельзя, и они заданы, то их необходимо ввести в расчетную схему, включая последовательно с соответствующим источником. По признакам, данным в определении независимого контура, можно выделить следующие независимые контуры: a-b-c-g-a (контур I), c-d-e-g-c (контур II), a-g-e-f-a (контур III). 2. Направление обхода указывается стрелкой снаружи схемы. Направление обхода по контурам выбрали совпадающим с направлением движения часовой стрелки. 3. Направления контурных токов в независимых контурах выбрали такими же, как и направления обхода контуров, по часовой стрелке.

Рабочее задание: 1.По заданным значениям напряжения, частоты и параметров элементов найдите символическим методом токи во всех ветвях и напряжения на всех элементах цепи. 2.Составьте баланс комплексных мощностей. 3.Постройте в масштабе векторные диаграммы токов и напряжений.

Цель работы: настоящее домашнее задание ставит своей целью систематизировать знания, полученные при изучении раздела «электропривод» курса электротехники, и привить навык по выбору мощности двигателя для конкретного электропривода.

Содержание работы: 1. По заданной производительности производственного механизма выберете тип и серию (марку) двигателя для электропривода. 2. Рассчитайте мощность и ток, потребляемые двигателем из сети, а также номинальный момент и пусковой ток двигателя. 3. Изобразите схему управления и защиты и опишите принцип работы.

Особенности микроволнового диапазона и динамического принципа управления преобразованием энергии

Достоинства и недостатки использования микроволнового диапазона. Электромагнитные колебания микроволнового и оптического диапазонов обладают целым рядом специфических особенностей и свойств, отличающими их от смежных участков спектра. На сверхвысоких частотах длина волны соизмерима с линейными размерами физических тел. Геометрические размеры схемотехнических элементов аппаратуры, в том числе и антенн, также оказываются соизмеримыми с длиной волны и могут значительно превышать ее. Поэтому волны диапазона СВЧ обладают квазиоптическими свойствами, т. е. по характеру распространения приближаются к световым волнам. Наряду с этим принципы работы СВЧ устройств в значительной мере определяются явлениями дифракции и не могут непосредственно использовать законы геометрической оптики, а также законы обычных электрических цепей.

Особенности динамического принципа управления преобразованием Идея динамического управления процессом преобразования энергии предполагает возможность управления эффективностью энергообмена между электронным потоком, пронизывающем область локализации выходного электромагнитного поля и этим полем. При этом управление производится путем воздействия на электронный поток со стороны входного электромагнитного поля, локализованное в другом или том же самом межэлектродном промежутке.

Классификация приборов микроволнового диапазона В настоящее время разработано много приборов, отличающихся как принципом действия, так и областью применения. Электровакуумные приборы СВЧ диапазона могут быть по характеру энергообмена разделены на приборы типов О и М. В приборах типа О происходит преобразование кинетической энергии электронов в энергию СВЧ поля в результате торможения электронов этим полем. Магнитное поле или не используется совсем, или применяется только для фокусировки электронного потока и принципиального значения для процесса энергообмена не имеет.

Электрофизические свойства однородных и неоднородных полупроводников

Свободные носители зарядов в полупроводниках Полупроводники представляют собой вещества, которые по своей удельной электрической проводимости (10-6—10-8 Ом-1см-1) являются промежуточными между проводниками и диэлектриками. Их удельная проводимость сильно зависит от температуры и концентрации примесей, а во многих случаях — и от различных внешних воздействий (света, электрического поля и др.). По своему составу полупроводники можно разделить на простые, если они образованы атомами одного химического элемента (например, германия Ge, кремния Si, селена Se), и сложные, если они являются химическим соединением или сплавом двух или нескольких химических элементов (например, антимонид индия InSb, арсенид галлия GaAS и др.).

Равновесная концентрация СНЗ в примесных и беспримесных полупроводниках Равновесная концентрация зарядов в собственном полупроводнике Вероятность p нахождения свободного электрона в энергетическом состоянии W определяется статистической функцией Ферми— Дирака

Движение СНЗ в электрическом поле В собственном полупроводнике при Т=0К электроны и дырки отсутствуют и внешнее напряжение не вызывает в нем ток. При Т>0К в отсутствии электрического поля электроны и дырки движутся хаотически. Если же к полупроводнику приложить внешнее напряжение, то внутри него возникает упорядоченное движение электронов в направлении положительного градиента потенциала du/dx, а дырок — в обратном направлении. В полупроводнике под влиянием различных энергетических воздействий может возникнуть неравновесная концентрация зарядов. После прекращения воздействия избыточные носители постепенно рекомбинируют и концентрация вновь становится равновесной.

Электрическим переходом называется слой в полупроводнике между двумя областями с различными типами электропроводности (n-полупроводник, p-полупроводник, металл, диэлектрик) или разными величинами удельной электрической проводимости. Если переход создается между двумя областями полупроводника, одна из которых имеет электропроводность n-типа, а другая p-типа, то такой переход называется электронно-дырочным или p-n-переходом.

Электрические и геометрические параметры p-n перехода Высота потенциального барьера и контактная разность потенциалов

Статическое и дифференциальное сопротивления Дифференциальное сопротивление определяется выражением Rдиф = dU/dI и характеризует крутизну ВАХ в рассматриваемой точке. Для идеализированного перехода по формуле (3.16) можно получить аналитическое выражение

Способы нарушения равновесия Равновесие в переходе может быть нарушено либо путем изменения напряженности поля в переходе, либо путем изменения концентрации СНЗ. Концентрация СНЗ как в переходе, так и прилегающих к нему областях полупроводника, может быть изменена, например, путем облучения полупроводника светом подходящей длины волны или путем любого другого воздействия, изменяющего скорость генерации (рекомбинации) свободных носителей заряда в этих областях. Она может быть изменена также путем принудительного введения (инжекции) в переход или, наоборот, путем принудительного извлечения (экстракции) из перехода СНЗ.

Рассмотрим в чем заключается эффект накопления заряда. В случае подачи на диод коротких импульсов напряжения длительностью порядка единиц или долей микросекунды необходимо учитывать инерционность его включения и выключения, обусловленную переходными процессами. При протекании прямого тока через диод в его базе из-за инжекции накапливаются неосновные неравновесные носители заряда. Если изменить полярность приложенного к диоду напряжения с прямой на обратную, этот заряд рассасывается постепенно, и возникающий обратный ток вследствие высокой концентрации неосновных неравновесных носителей в базе окажется вначале значительно больше статического тока насыщения; величина его будет ограничиваться лишь внешней нагрузкой. Следовательно, при быстром переключении с прямого напряжения на обратное диод запирается не сразу. Это явление связано со спецификой работы p-n-перехода и обусловлено так называемым эффектом накопления заряда.

Технологические особенности изготовления диодов СВЧ диапазона Характерной особенностью p-n-переходов диодов и транзисторов СВЧ-диапазона является их малая емкость, что достигается уменьшением площади перехода. Конструкция приборов на основе р-n-переходов и технология их изготовления должны обеспечивать точное и воспроизводимое выполнение как поперечных размеров перехода, так и толщины слоев полупроводниковых материалов, а также требуемый уровень и профиль легирования.


Электричество и электромагнетизм