Электроника и электротехника Работа электрических машин и аппаратов Асинхронный двигатель Элементы зонной теории твердого тела Проводниковые материалы Полупроводниковые материалы

Магнитные цепи.

Работа электрических машин и аппаратов, а также электроизмерительных приборов основана на использовании электромеханического и индуктивного действий магнитного поля.

Чтобы использовать эти явления, в рабочем объеме названных электротехнических устройств, необходимо создать магнитное поле заданной интенсивности и конфигурации.

Часть электротехнического устройства, содержащая ферромагнитные тела, предназначенная для создания магнитного поля, называется магнитной цепью.

Магнитная цепь состоит из элементов, возбуждающих магнитное поле, которые называются источником магнитодвижущей силы (МДС) и магнитопровода. Источниками магнитодвижущей силы могут быть постоянные магниты или катушки с током. Магнитопровод – ферромагнитный сердечник, который создает замкнутый путь для магнитных силовых линий поля.

Конструктивно магнитные цепи могут быть разветвленными и неразветвленными, однородными и неоднородными, с одним или несколькими источниками МДС.

 


Рис. 1. Магнитная цепь с одним источником МДС:

а, в, г – неразветвленные; б – разветвленная; в – неоднородная (правый стержень магнитопровода имеет большее сечение); г – неоднородная (магнитная цепь имеет воздушный зазор).

Основные характеристики магнитного поля.

Основной величиной, характеризующей интенсивность магнитного поля, является магнитная индукция В. Величина магнитной индукции численно равна силе, с которой магнитное поле действует на проводник длиной 1 м, расположенный перпендикулярно магнитным силовым линиям, по которому протекает ток в 1 А. В системе СИ магнитная индукция измеряется в Теслах, 1 Тл (Тесла)=1 . Магнитная индукция величина векторная, ее направление в любой точке магнитного поля совпадает с направлением касательной к магнитной силовой линии. Магнитная индукция определяет интенсивность поля в заданной точке пространства, поэтому она является точечной характеристикой поля. При расчете электротехнических устройств наряду с точечной характеристикой магнитного поля пользуются объемной характеристикой - магнитным потоком Ф.

Магнитный поток Ф, пронизывающий площадку S, расположенную перпендикулярно силовым линиям поля, определяется как:

Ф =В · S (1.1)

В системе СИ магнитный поток измеряется в Веберах (Вб), 1 Вб=1 В·с. Магнитная индукция, создаваемая проводниками, по которым течет ток, зависит от величины токов, геометрических размеров проводников и от свойств среды, в которой создается поле.

В = μа · Н (1.2)

где Н – напряженность магнитного поля, величина, зависящая от тока и геометрических размеров проводников; μа – магнитная проницаемость – величина, характеризующая свойства среды, в которой создается магнитное поле. В системе СИ напряженность магнитного поля измеряется в А/м, а магнитная проницаемость в Гн/м.

Намагничивание ферромагнитных материалов.

Магнитная индукция, образованная данным током в вакууме, отличается от индукции, образованной тем же током в ферромагнитной среде из-за ее намагничивания:

В = Во + Вср (1.3)

где Во – индукция, создаваемая током в вакууме; Вср - индукция, создаваемая намагниченной средой.

Сущность намагничивания среды состоит в ориентации спиновых магнитных моментов во внешнем поле. Степень намагничивания характеризуется векторами намагниченности J – магнитным моментом элементарных токов, отнесенных к единице объема вещества.

Если магнитная индукция, создаваемая данным током в вакууме равна:

Во = μо · Н (1.4)

где μо =4π·10-7 Гн/м – магнитная проницаемость вакуума, то магнитная индукция, создаваемая тем же током в ферромагнитной среде, будет:

В = μо(Н + J) = μоН + μоJ (1.5)

Следовательно, ферромагнитная среда при намагничивании усиливает магнитную индукцию, создаваемую током. Усиление индукции будет тем больше, чем больше намагниченность ферромагнетика. Свойство ферромагнитных материалов усиливать магнитное поле характеризуется относительной магнитной проницаемостью μr. Она показывает во сколько раз магнитная индукция В, создаваемая данным током в данном ферромагнитном материале, больше магнитной индукции Во, создаваемой тем же током в вакууме.

μr =  (1.6)

Иными словами, относительная магнитная проницаемость показывает, во сколько раз ферромагнитный материал способен усилить магнитное поле.

В электротехнике для усиления магнитных полей используют ферромагнитные материалы с относительной проницаемостью 700 – 800 000. Их характерной особенностью является сильная зависимость магнитной индукции от напряженности внешнего поля.

Как видно из рис. 1.2, намагниченность ферромагнитного материала быстро растет в слабых полях, а когда все спиновые моменты будут сориентированы вдоль внешнего поля, ее рост прекращается.

Зависимость В=f(Н) называется кривой первоначального намагничивания. В слабых полях индукция В увеличивается за счет намагничивания ферромагнетика, а когда он намагнитится до насыщения, индукция растет только за счет Во, создаваемой внешним полем.

Кривая первоначального намагничивания позволяет определить абсолютную μа и относительную μr магнитные проницаемости при заданной напряженности внешнего поля:

μа =  и μr =  (1.7)

знание которых необходимо при практических расчетах электромагнитных устройств. Кривые первоначального намагничивания ферромагнитных материалов, выпускаемых для электротехнической промышленности, можно найти в электротехнических справочниках.

Если после намагничивания ферромагнитного материала до насыщения и достижения максимальной индукции Вm уменьшать напряженность внешнего поля до 0, то магнитная индукция будет уменьшаться по кривой 1-2 и не будет совпадать с кривой первоначального намагничивания 0-1 (рис.1.3).

 

При напряженности внешнего поля Н=0 магнитная индукция В≠0, а достигает некоторого значения Br, которое называется остаточной индукцией. Таким образом, размагничивание ферромагнитной среды отстает от изменения напряженности внешнего поля. Явление отставания изменения магнитной индукции от изменения напряженности внешнего поля называется магнитным гистерезисом.

Для того чтобы полностью размагнитить ферромагнитный материал, необходимо создать поле противоположного направления напряженностью –Нс.

Значение напряженности внешнего поля, при которой ферромагетик полностью размагнитится, называется коэрцитивной силой –Нс. При изменении напряженности поля от –Нс до –Нm ферромагнетик будет опять намагничиваться по кривой 3-4, достигая максимальной индукции –Bm, а при изменении напряженности поля от –Нm до 0 он вновь будет размагничиваться до значения индукции -Br, а при достижении напряженности поля +Нс он вновь будет полностью размагничен. Дальнейшее намагничивание ферромагнитного материала пойдет по кривой 6-1.

Замкнутая кривая, характеризующая изменение магнитной индукции в зависимости от напряженности внешнего поля, называется петлей гистерезиса. Ее площадь пропорциональна энергии, которая затрачивается на один цикл перемагничивания единицы объема ферромагнитного материала.

Основные ферромагнитные материалы.

В зависимости от величины коэрцитивной силы ферромагнитные материалы делят на магнитомягкие Нс<400 А/м и магнитожесткие Нс>400 А/м.

Магнитомягкие материалы имеют узкую петлю гистерезиса, что говорит о малых потерях на перемагничивание; индукция насыщения Bm у таких материалов велика и лишь незначительно отличается от остаточной индукции Br, а коэрцитивная сила Нс мала, поэтому они легко перемагничиваются.

Самым распространенным магнитомягким материалом является листовая электротехническая сталь, которая применяется для изготовления магнитопроводов электрических машин и аппаратов. Для уменьшения вихревых токов, возникающих в магнитопроводах при работе в переменных магнитных полях, вводя в ее состав при варке до 45% кремния.

Магнитопроводы, работающие в слабых магнитных полях, должны иметь большую относительную магнитную проницаемость на начальном участке кривой намагничивания - μа нач. Этому требованию в наибольшей степени удовлетворяют железо-никелевые сплавы с добавками молибдена или ванадия, которые называются пермаллоями.

Для получения очень сильных магнитных полей применяют железо-кобальтовые сплавы, называемые пермендюрами. Они позволяют получать магнитные поля с индукцией насыщения до 2,5 Тл.

Магнитожесткие материалы имеют высокую остаточную индукцию и коэрцитивную силу и применяются для изготовления постоянных магнитов. Наиболее распространенные магнитожесткие сплавы Fe-Ni-Al (альни), Fe-Ni-Al-Co (альнико), Fe-Ni-Al-Si (альниси), которые обладают коэрцитивной силой до 200 кА/м и магнитной энергией в зазоре между полюсами магнита свыше 80 кДж/м3. Для работы в ответственной аппаратуре приментют постоянные магниты из сплавов кобальта с самарием, гадолинием и диспрозием, которые обладают высочайшими магнитными характеристиками, но очень дороги. Широкое распространение получили также магниты из порошков, которые получают прессованием порошков сплавов альни, альнико и кобальт-самарий, а также магниты из ферритов бария и кобальта.

Особую группу магнитных материалов составляют магнитомягкие материалы со специальными свойствами. Наиболее распространены в этой группе материалы с прямоугольной петлей гистерезиса, которые применяют в вычислительной технике, т. К. они четко и быстро переходят из одного магнитного состояния –Bm в другое +Bm. К этой группе относятся также термомагнитные и магнитострикционные материалы. Термомагнитные материалы (сплавы никеля с медью) изменят свои свойства при изменении температуры и применяются в измерительной технике для компенсации влияния температуры на показания приборов. Магнитострикционные материалы изменяют геометрические размеры под действием внешнего магнитного поля и применяются в генераторах акустических колебаний звуковой и ультразвуковой частоты.

Закон полного тока. Свойство тока создавать магнитное поле называется намагничивающей силой тока Θ. В системе Си намагничивающая сила измеряется в амперах. Закон полного тока гасит: интеграл от напряженности магнитного поля по любому замкнутому контуру, равен алгебраической сумме токов, пронизывающих этот контур.  (1.8) где, i – номер тока; n – количество токов; l – средняя длина силовой линии. Положительными считаются токи, направления которых совпадают с направлением обхода контура. Положительные направления тока и магнитного поля, создаваемого этим током, связаны правилом правостороннего винта. Если положительное направление тока совпадает с направлением поступательного движения винта, то направление его вращения совпадает с положительным направлением магнитного поля.

Катушка со стальным сердечником при синусоидальном напряжении. Катушка со стальным сердечником является важнейшим элементом трансформаторов, электрических машин, электромагнитных реле, магнитных усилителей и многих других электротехнических устройств. Ее работа при синусоидальном напряжении имеет ряд особенностей, которые необходимо учитывать при расчете и эксплуатации электрооборудования.

Трансформатор. Назначение. Области применения. Принцип Действия. Номинальные величины. Трансформатор это статический электромагнитный аппарат, который посредством магнитного поля преобразует переменный ток одного напряжения в переменный ток другого напряжения той же частоты. Трансформаторы используются при передаче электроэнергии от станции к потребителю, при ее распределении между отдельными потребителями, для питания отдельных особо мощных потребителей, в технике связи, радиотехнике и телевидении, в измерительной технике. Столь широкие области применения трансформаторов требуют широкого диапазона их мощностей. Трансформаторы изготавливаются на мощности от сотен мВА до нескольких ВА, а трансформаторы систем автоматики на доли ВА.

Опыт холостого хода трансформатора служит для определения коэффициента трансформации, потерь мощности в сердечнике и определения параметров намагничивающей цепи в схеме замещения. При проведении опыта первичная обмотка трансформатора ставится под номинальное напряжение, а к зажимам вторичной обмотки подключается вольтметр.

Опыт короткого замыкания трансформатора. Опыт короткого замыкания служит для определения потерь мощности в обмотках трансформатора, а также для определения их параметров в схеме замещения. При проведении опыта вторичная обмотка замыкается не на амперметр, а к первичной обмотке подводится пониженное напряжение, но такое, чтобы в первичной обмотке протекал номинальный ток. Поскольку поток в сердечнике будет минимален, то и потери на перемагничивание будут незначительными, и можно считать, что ваттметр будет показывать потери мощности на нагрев обмоток.

Электрические машины. Принцип действия. В основу работы всех электрических машин положены два закона физики: электромагнитной индукции и закон Ампера. Величина ЭДС, наведенной в проводящем контуре, находящимся в магнитном поле: Следовательно, любой электромагнитной механизм должен иметь устройство для создания магнитного поля (в электрических машинах это статор) и совокупность проводников, в которых наводится ЭДС (якорь, ротор). Как создается магнитное поле физически безразлично. В электрических машинах оно создается катушками со стальными сердечниками или постоянными магнитами.

Машины постоянного тока. Устройство. Основными частями машины являются: Статор – неподвижная часть, которая служит для создания постоянного неподвижного магнитного поля; Якорь – вращающаяся часть машины. Статор – литой, на его внутренней поверхности смонтированы чередующиеся полюсы, на которых смонтированы обмотки возбуждения, создающие магнитное поле.


Электричество и электромагнетизм