ОСНОВЫ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ и инженерной графики

Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Туриcтические
достопримечательности
Мексика
Биосферный резерват Сиан-Каан
Ольмеки
Пуэбла-де-Сарагоса
Великая Пирамида Чолула
Кафедральный собор Успения
Пресвятой Богородицы в Мехико
Замок Чапультепек (Castillo de Chapultepec)
Памятник героям независимости
Пирамида Солнца
Францисканские миссии в Сьерра-Горде
Церковь Святого Михаила Архангела
Достопримечательности
Гуанахуато Ла Валенсиана
Алхондига де Гранадитас
Иконографический музей Дон Кихота
Белгород
экскурсия по центральной части г. Белгорода

Смоленский собор

Белгородский государственный
академический театр
Свято-Троицкий бульвар
Санкт Петербург

Мосты Санкт-Петербурга

Троицкий мост
Банковский мост с четырьмя грифонами
Демидов мост через канал Грибоедова
Виды и организация туризма
Культурно-познавательный туризм
Деловой туризм.
Рекреационный туризм
Образовательный туризм
ШОП-ТУР
Религиозный туризм
Экологический туризм
Приключенческий туризм
тур «Затерянный город» в Таиланде
Анимация – новое направление в туризме
Сельский туризм
Горнолыжный туризм
Культурное наследие народов Майя
САМЫЕ РАННИЕ МАЙЯ
ПОСЕЛЕНИЯ РАННЕАРХАИЧЕСКОГО
ПЕРИОДА
ПОЯВЛЕНИЕ КУЛЬТУРЫ МАЙЯ
расцвет культуры «мирафлорес»
ЦЕНТРАЛЬНАЯ ОБЛАСТЬ МАЙЯ.
КУЛЬТУРА «ТСАКОЛ»
В позднеклассический период искусство майя
ИЦЫ И ГОРОД МАЙЯПАН
МАЙЯ-МЕКСИКАНСКИЕ ДИНАСТИИ
В ЮЖНОЙ ОБЛАСТИ
Государство древних майя
МИРОВОЗЗРЕНИЕ МАЙЯ
Диего де Ланда
Развитие туризма в
Новосибирской области

Туристические фирмы

Для отдыхающих в Краснозерском районе

Колыванский район

Памятники археологии

 

МЕТРИЧЕСКИЕ ЗАДАЧИ

Классификация метрических задач (определение углов и расстояний)

Решения метрических задач основаны на применении практически всех предыдущих разделов курса начертательной геометрии. Включая прежде всего взаимопринадлежность и пересечение геометрических фигур, параллельность и перпендикулярность и способы преобразования комплексного чертежа.

Поскольку алгоритмы всех разновидностей метрических задач приведены в рабочих тетрадях, то ограничимся их простым перечислением:

Определение расстояний:

1) Между точками.

2) От точки до прямой линии.

3) Между параллельными прямыми.

4) От точки до плоскости.

5) От прямой до плоскости.

6) Между плоскостями.

7) Между скрещивающимися прямыми.

Определение углов:

1) Между пересекающимися прямыми.

2) Между скрещивающимися прямыми.

3) Между прямой и плоскостью.

4) Между плоскостями.



Примеры решения метрических задач

Простейшие метрические задачи приводились при изучении отдельных предыдущих разделов курса. Теперь рассмотрим несколько относительно сложных задач с применением и почти без применения способов преобразования комплексного чертежа.

Пример1 (Рис.69) Определить расстояние от точки  до отрезка  без преобразования чертежа (кроме заключительной части задачи).

По ходу решения задачи необходимо выполнить три вещи: задать необходимый перпендикуляр, пересечь его с отрезком  и определить его натуральную величину этого перпендикуляра.

Задать перпендикуляр – значит найти его точку пересечения с отрезком. С отрезком  общего положения. В этом случае перпендикуляр не окажется линией уровня. Поэтому теорема о трех перпендикулярах здесь не поможет. Обратимся к другому пути решения.

Из точки  можно проводить бесконечное множество прямых, перпендикулярных к отрезку . Но только один из них имеет шансы пересечь отрезок в некоторой точке . Построить точку  можно как результат пересечения отрезка  с плоскостью , содержащей в себе упомянутые перпендикуляры.

Остается определить длину перпендикуляра  любым способом преобразования чертежа или способом прямоугольного треугольника в данной задаче используем способ вращения вокруг проецирующей прямой.

Решение:

1)

2) : , – посредник.

 

 

3)  – перпендикуляр.

4) – ответ.

Пример 2 (Рис.70). Решить предыдущую задачу способом замены плоскостей проекций. Дополнительно спроецировать перпендикуляр на исходные плоскости проекций: и .

Чтобы определить длину перпендикуляра , необходимо спроецировать его в натуральную величину. А это станет возможным, если отрезок преобразовать в проецирующую прямую и использовать его вырожденную в точку проекцию. Для решения задачи потребуется две замены плоскостей проекций.

Решение:

1-я замена:

1.

2.  и ,

 AB(A1B1, A4B4) – линия уровня.

2-я замена:

3. (П5 П4) AB Х45 A4B4,

4. A5 = B5 и M5,

 AB(A4B4, A5=B5) – проецирующая

 прямая.

5. |M5, (A5=B5)|=|M,AB| - ответ.

Дополнительно: при обратном проецировании перпендикуляра на плоскости  и учесть, что в системе плоскость   перпендикуляр  – линия уровня.

Пример 3 (Рис.71). Определить угол наклона отрезка  к плоскости  способом замены плоскостей проекций.

На чертеже угол между прямой и плоскостью определяется углом между вырожденной проекцией плоскости и натуральной величиной отрезка на прямой. Для получения вырожденной проекции плоскости требуется две замены плоскостей проекций. При второй замене необходимо учитывать, что отрезок в последней системе плоскостей проекций должен оказаться линией уровня.

Решение:

 1-я замена:

1.

2. и ,

 – плоскость уровня.

 2-я замена:

3.  ,

4. и ,

– проецирующая прямая,

– прямая уровня.

5. .

6. Обводка с учётом видимости.

Туризм