ОСНОВЫ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ и инженерной графики

Туриcтические
достопримечательности
Мексика
Биосферный резерват Сиан-Каан
Ольмеки
Пуэбла-де-Сарагоса
Великая Пирамида Чолула
Кафедральный собор Успения
Пресвятой Богородицы в Мехико
Замок Чапультепек (Castillo de Chapultepec)
Памятник героям независимости
Пирамида Солнца
Францисканские миссии в Сьерра-Горде
Церковь Святого Михаила Архангела
Достопримечательности
Гуанахуато Ла Валенсиана
Алхондига де Гранадитас
Иконографический музей Дон Кихота
Белгород
экскурсия по центральной части г. Белгорода

Смоленский собор

Белгородский государственный
академический театр
Свято-Троицкий бульвар
Санкт Петербург

Мосты Санкт-Петербурга

Троицкий мост
Банковский мост с четырьмя грифонами
Демидов мост через канал Грибоедова
Виды и организация туризма
Культурно-познавательный туризм
Деловой туризм.
Рекреационный туризм
Образовательный туризм
ШОП-ТУР
Религиозный туризм
Экологический туризм
Приключенческий туризм
тур «Затерянный город» в Таиланде
Анимация – новое направление в туризме
Сельский туризм
Горнолыжный туризм
Культурное наследие народов Майя
САМЫЕ РАННИЕ МАЙЯ
ПОСЕЛЕНИЯ РАННЕАРХАИЧЕСКОГО
ПЕРИОДА
ПОЯВЛЕНИЕ КУЛЬТУРЫ МАЙЯ
расцвет культуры «мирафлорес»
ЦЕНТРАЛЬНАЯ ОБЛАСТЬ МАЙЯ.
КУЛЬТУРА «ТСАКОЛ»
В позднеклассический период искусство майя
ИЦЫ И ГОРОД МАЙЯПАН
МАЙЯ-МЕКСИКАНСКИЕ ДИНАСТИИ
В ЮЖНОЙ ОБЛАСТИ
Государство древних майя
МИРОВОЗЗРЕНИЕ МАЙЯ
Диего де Ланда
Развитие туризма в
Новосибирской области

Туристические фирмы

Для отдыхающих в Краснозерском районе

Колыванский район

Памятники археологии

 

ПАРАЛЛЕЛЬНОСТЬ И ПЕРПЕНДИКУЛЯРНОСТЬ ГЕОМЕТРИЧЕСКИХ ФИГУР

Параллельность прямых и плоскостей

Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Пример (рис.60). Прямая параллельна плоскости , так как она параллельна прямой , принадлежащей этой плоскости.

Две плоскости параллельны, если две не параллельные прямые одной плоскости параллельны, соответственно, двум прямым другой плоскости.

Пример (Рис.61). Задать плоскость , параллельную плоскости .

Искомую плоскость зададим двумя пересекающимися прямыми, которые параллельны, соответственно, прямым, задающим плоскость  и дополительной прямой “” на этой же плоскости.

Дано:

.

Решение:

1). .

2).

3). .

?: .

Общие понятия перпендикулярности.

Задачи на перпендикулярность – логически взаимно связаны. От плоского прямого угла до нормали к криволинейной поверхности (Рис.62). Без теоремы о проецировании прямого угла не построить перпендикуляр к плоскости. Тем более – не решить задачу для взаимно перпендикулярных плоскостей и не построить на чертеже нормаль к криволинейной поверхности.


По теореме о проецировании прямого угла следует, что прямой угол проецируется без искажения, если одна сторона параллельна плоскости проекций, а вторая – не перпендикулярна к ней.

Особого доказательства здесь не потребуется, если теорему о проецировании прямого угла сравнить с известной обратной теоремой о трех перпендикулярах (Рис.63). По этой теореме, если прямая на плоскости перпендикулярна к наклонной прямой, то она перпендикулярна к проекции этой прямой: ,

Введем на рисунке плоскость проекций П1, параллельную П0 и доказательство теоремы о проецировании прямого угла станет очевидным:

,

Перпендикулярность прямых и плоскостей.

Пример 1 (Рис.64). Через точки  и . И провести перпендикуляры к линии .

Через любую точку в пространстве можно провести бесконечное число прямых, пересекающих линию  или скрещивающихся с ней под прямым углом. Но не все прямые, углы проецируются без искажения. Поэтому для проведения перпендикуляров предпочтительно задавать линии уровня.

Решение:

1). ,

2). (fB)lf2l2

Для прямой, перпендикулярной к плоскости, дадим поэтапно три определения: общее для пространства, в принципе применимое для комплексного чертежа и практически применимое для выполнения графических построений:

1) Прямая перпендикулярна к плоскости, если она перпендикулярна к двум не параллельным прямым этой плоскости.

2) Прямая перпендикулярна к плоскости, если она перпендикулярна (в частности) к двум линиям уровня на этой плоскости.

3) Прямая перпендикулярна к плоскости, если горизонтальная проекция прямой перпендикулярна к горизонтальной проекции горизонтали этой плоскости, а фронтальная проекция прямой- перпендикулярна к фронтальной проекцией фронтали. (Используются любые пары изображения перпендикуляра и с профильной проекцией. Тогда профильная проекция прямой перпендикулярна к профильной прямой плоскости).

Пример 2 (Рис.65). Через точку  провести перпендикулярную к плоскости .

Дано:

.

Решение:

1). ,

2). ,

3).

?: (n A) ∆.

Пример 3 (Рис.66). Через точку провести плоскость, перпендикулярную к плоскости .

Зададим искомую плоскость двумя пересекающимися прямыми. Одна из них может быть произвольная, вторая – обязательно перпендикулярной к заданной плоскости.

Дано:

Решение:

1).  – произвольная прямая,

2). ,

3). .

?: .

Туризм