ОСНОВЫ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ и инженерной графики

Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Туриcтические
достопримечательности
Мексика
Биосферный резерват Сиан-Каан
Ольмеки
Пуэбла-де-Сарагоса
Великая Пирамида Чолула
Кафедральный собор Успения
Пресвятой Богородицы в Мехико
Замок Чапультепек (Castillo de Chapultepec)
Памятник героям независимости
Пирамида Солнца
Францисканские миссии в Сьерра-Горде
Церковь Святого Михаила Архангела
Достопримечательности
Гуанахуато Ла Валенсиана
Алхондига де Гранадитас
Иконографический музей Дон Кихота
Белгород
экскурсия по центральной части г. Белгорода

Смоленский собор

Белгородский государственный
академический театр
Свято-Троицкий бульвар
Санкт Петербург

Мосты Санкт-Петербурга

Троицкий мост
Банковский мост с четырьмя грифонами
Демидов мост через канал Грибоедова
Виды и организация туризма
Культурно-познавательный туризм
Деловой туризм.
Рекреационный туризм
Образовательный туризм
ШОП-ТУР
Религиозный туризм
Экологический туризм
Приключенческий туризм
тур «Затерянный город» в Таиланде
Анимация – новое направление в туризме
Сельский туризм
Горнолыжный туризм
Культурное наследие народов Майя
САМЫЕ РАННИЕ МАЙЯ
ПОСЕЛЕНИЯ РАННЕАРХАИЧЕСКОГО
ПЕРИОДА
ПОЯВЛЕНИЕ КУЛЬТУРЫ МАЙЯ
расцвет культуры «мирафлорес»
ЦЕНТРАЛЬНАЯ ОБЛАСТЬ МАЙЯ.
КУЛЬТУРА «ТСАКОЛ»
В позднеклассический период искусство майя
ИЦЫ И ГОРОД МАЙЯПАН
МАЙЯ-МЕКСИКАНСКИЕ ДИНАСТИИ
В ЮЖНОЙ ОБЛАСТИ
Государство древних майя
МИРОВОЗЗРЕНИЕ МАЙЯ
Диего де Ланда
Развитие туризма в
Новосибирской области

Туристические фирмы

Для отдыхающих в Краснозерском районе

Колыванский район

Памятники археологии

 

Пример 4 (Рис.48). Построить линию пересечения закрытого тора и полусферы.

Горизонтальные проецирующие секущие плоскости пересекают заданные поверхности по вспомогательным окружностям с простыми проекциями. Пересекаясь попарно окружности определяют точки, принадлежащие линии пересечения заданных поверхностей. Обычный алгоритм решения. Напомним только и дополним последовательность решения задач на пересечение поверхностей применительно к способу проецирующих секущих плоскостей:

1) Выбрать способ решения задачи.

2) Построить опорные точки линии пересечения любым способом и обозначить их буквами. (В данном случае – это самая высокая точка  и точка  на основании поверхностей).

3) Ограничить опорными точками область применения посредников (размер в данной задаче).

4) Построить необходимое число промежуточных точек линии пересечения выбранным методом и при необходимости обозначить их цифрами.

5) Построить линию пересечения.

6) Обвести чертеж в целом с учетом видимости.

 

 

Метод концентрических сфер

Метод концентрических сфер применяется для пересечения поверхностей вращения, у которых общая плоскость симметрии параллельна плоскости проекций. В этом случае сфера с центром в точке пересечения осей вращения соосна с поверхностями и пересекает их по окружностям. Которые, в свою очередь, пересекаются в двух точках, принадлежащих искомой линии пересечения. На чертеже – это совпадающие между собой проекции двух конкурирующих точек в месте пересечения вырожденных проекций вспомогательных окружностей. В таких случаях пояснения и обозначения на чертеже ведутся, как правило, только для видимых проекций конкурирующих точек и, соответственно, для видимых проекций конкурирующих частей линии.

В целом решение задач методом концентрических сфер ведется в обычной, принятой ранее последовательности. За исключением того, что после выбора метода необходимо ограничить область применения посредников минимальной и максимальной сферами.

Пример (Рис.49). Построить линию пересечения поверхностей вращения цилиндра и конуса с общей фронтальной плоскостью симметрии.

Решение:

1) Условия задачи позволяют использовать способ концентрических сфер.

2) Определяем область применения посредников.

Радиус минимальной сферы () определяем сравнением сфер, вписанных в заданные поверхности (и ). Выбор падает на больший радиус, радиус сферы, вписанной в цилиндр (). Воспользуемся тем, что минимальная сфера дает возможность построить одну из опорных точек  как место пересечения проекций линий касания сферы с цилиндром и линии пересечения её с конусом.

Максимальная сфера должна пройти через самую удаленную от центра точку, принадлежащую искомой линии. В данном случае это сфера, которая проходит через основание конуса и пересекает цилиндр (). И вот – проекция еще одной опорной точки: .

3) На этом этапе определяют опорные точки. В нашем случае осталось не строить, а просто обозначить очерковую проекцию точки  пересекающей главные меридианы поверхностей. В итоге имеем три опорные точки проекции начала и конца линии и степени ее перегиба.

4) При помощи промежуточных сфер определяем проекции необходимого числа текущих точек.

5) Строим изображение искомой линии пересечения.

6) Обводим чертеж с учетом видимости.

Особый интерес вызывает частный случай метода концентрических сфер, когда поверхности вращения описаны вокруг одной и той же сферы. Это приводит к резкому сокращению трудоемкости построений благодаря теореме Г. Монжа.

Частный случай теоремы Г.Монжа

(без доказательства)

Если две поверхности вращения 2-го порядка(конусы и цилиндры)описаны вокруг общей сферы, то они пересекаются по двум линиям того же порядка. Это могут быть эллипсы или параболы. Плоскости которые пересекаются по прямой, проходящей через точки пересечения линий касания сферы с заданными поверхностями.

В этом случае вырожденные прямолинейная проекция каждой из линий пересечения строится по двум из трёх возможных точкам. Это проекция двух точек пересечения очерковых образующих и совмещенная проекция конкурирующих точек пересечения искомых линий пересечения.

Пример (Рис.50). Построить результат пересечения цилиндра и конуса вращения, если они описаны вокруг одной и той же сферы.

Решение:

1). Обозначим проекции всех очерковых точек: ,  и .

2). Строим проекцию одного из эллипсов: .

3). Строим проекцию 2-ого эллипса: , , где  – результат пересечения проекций линий по которым сфера касается с заданными поверхностями.

Туризм