ОСНОВЫ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ и инженерной графики

Туриcтические
достопримечательности
Мексика
Биосферный резерват Сиан-Каан
Ольмеки
Пуэбла-де-Сарагоса
Великая Пирамида Чолула
Кафедральный собор Успения
Пресвятой Богородицы в Мехико
Замок Чапультепек (Castillo de Chapultepec)
Памятник героям независимости
Пирамида Солнца
Францисканские миссии в Сьерра-Горде
Церковь Святого Михаила Архангела
Достопримечательности
Гуанахуато Ла Валенсиана
Алхондига де Гранадитас
Иконографический музей Дон Кихота
Белгород
экскурсия по центральной части г. Белгорода

Смоленский собор

Белгородский государственный
академический театр
Свято-Троицкий бульвар
Санкт Петербург

Мосты Санкт-Петербурга

Троицкий мост
Банковский мост с четырьмя грифонами
Демидов мост через канал Грибоедова
Виды и организация туризма
Культурно-познавательный туризм
Деловой туризм.
Рекреационный туризм
Образовательный туризм
ШОП-ТУР
Религиозный туризм
Экологический туризм
Приключенческий туризм
тур «Затерянный город» в Таиланде
Анимация – новое направление в туризме
Сельский туризм
Горнолыжный туризм
Культурное наследие народов Майя
САМЫЕ РАННИЕ МАЙЯ
ПОСЕЛЕНИЯ РАННЕАРХАИЧЕСКОГО
ПЕРИОДА
ПОЯВЛЕНИЕ КУЛЬТУРЫ МАЙЯ
расцвет культуры «мирафлорес»
ЦЕНТРАЛЬНАЯ ОБЛАСТЬ МАЙЯ.
КУЛЬТУРА «ТСАКОЛ»
В позднеклассический период искусство майя
ИЦЫ И ГОРОД МАЙЯПАН
МАЙЯ-МЕКСИКАНСКИЕ ДИНАСТИИ
В ЮЖНОЙ ОБЛАСТИ
Государство древних майя
МИРОВОЗЗРЕНИЕ МАЙЯ
Диего де Ланда
Развитие туризма в
Новосибирской области

Туристические фирмы

Для отдыхающих в Краснозерском районе

Колыванский район

Памятники археологии

 

Линейчатые поверхности, с плоскостью параллелизма.

Линейчатые поверхности с плоскостью параллелизма образуются перемещением прямолинейной образующей по двум направляющим. При этом образующая во всех своих положениях сохраняет параллельность некоторой заданной плоскости, называемой плоскостью параллелизма.

Геометрическая часть определителя a(m, n, b) такой поверхности a содержит две направляющие и плоскость параллелизма. В зависимости от формы направляющих эти поверхности делятся на: цилиндроиды – обе направляющие кривые; коноиды – одна направляющая – прямая, одна - кривая; косая плоскость – обе направляющие прямые.

Пример: построить каркас поверхности a(m, n, b) (рис. 10б).

В данном случае за плоскость параллелизма принята горизонтальная плоскость проекций. Образующая линия, пресекая кривую m и прямую n, в любом положении остается параллельной плоскости П1.

Всякая плоскость, параллельная плоскости параллелизма, пресекает эти поверхности по прямой линии. Отсюда, если требуется построить какую-либо образующую поверхности, надо рассечь поверхность плоскостью (например b), параллельной плоскости параллелизма, найти точки пересечения направляющих линий поверхности с этой плоскостью (b∩n=1; b∩m=2; рис. 10б) и через эти точки провести прямую.

Рис. 10

Для построения коноида на рис. 10б можно обойтись и без вспомогательных секущих плоскостей, так как фронтальные проекции образующих должны быть параллельны оси Х12. Плотность линий каркаса на фронтальной проекции задаем произвольно. Горизонтальные проекции заданных образующих строим по линии связи, используя свойство принадлежности.

Если необходимо найти проекцию точки А, заданную проекцией А2, необходимо поверхность рассечь плоскостью g , проходящей через точку А и параллельной плоскости параллелизма (на рис. 10б g//П1), найти образующую, как линию пересечения плоскости g с поверхностью a(ag=3, 4), по фронтальной проекции 32, 42 найти горизонтальную 31, 41 и на ней определить А1.

Построение точки встречи линии с поверхностью.

Найти точку встречи кривой l c поверхностью a(Р,S).

Решение 1. Заключаем кривую l (рис. 11) во вспомогательную проецирующую поверхность b^П1. Проекция b1 совпадает с проекцией l1. 2. Строим линию пересечения а поверхности α с поверхностью b′, (αÇb=е). Горизонтальная проекция этой линии а1 известна, она совпадает с b1. По горизонтальной проекции а1 строим фронтальную проекцию а2 (рис. 11). 3. Определяем искомую точку к пресечения кривой l с поверхностью a.. К=lÇ a есть точка встречи l и a. С одной стороны l и а принадлежат b и lÇ a=к. С другой аÌ a, следовательно кÌ α, то есть к есть точки встречи l с поверхностью α.

Рис. 11.

На рис. 11 фронтальная проекция точки встречи к2 определена l2Çа2=к2 . К1 строится по свойству принадлежности, проведением линий связи от к2 до пересечения с а1.

Рис. 12.

Построение линии пересечения поверхностей.

При решении задачи построения линии пересечения одной поверхности другою применяют метод сечений – основной метод решения позиционных задач. При этом заданные поверхности рассекают вспомогательными плоскостями или кривыми поверхностями (например сферами).

Туризм