ОСНОВЫ НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ и инженерной графики

Туриcтические
достопримечательности
Мексика
Биосферный резерват Сиан-Каан
Ольмеки
Пуэбла-де-Сарагоса
Великая Пирамида Чолула
Кафедральный собор Успения
Пресвятой Богородицы в Мехико
Замок Чапультепек (Castillo de Chapultepec)
Памятник героям независимости
Пирамида Солнца
Францисканские миссии в Сьерра-Горде
Церковь Святого Михаила Архангела
Достопримечательности
Гуанахуато Ла Валенсиана
Алхондига де Гранадитас
Иконографический музей Дон Кихота
Белгород
экскурсия по центральной части г. Белгорода

Смоленский собор

Белгородский государственный
академический театр
Свято-Троицкий бульвар
Санкт Петербург

Мосты Санкт-Петербурга

Троицкий мост
Банковский мост с четырьмя грифонами
Демидов мост через канал Грибоедова
Виды и организация туризма
Культурно-познавательный туризм
Деловой туризм.
Рекреационный туризм
Образовательный туризм
ШОП-ТУР
Религиозный туризм
Экологический туризм
Приключенческий туризм
тур «Затерянный город» в Таиланде
Анимация – новое направление в туризме
Сельский туризм
Горнолыжный туризм
Культурное наследие народов Майя
САМЫЕ РАННИЕ МАЙЯ
ПОСЕЛЕНИЯ РАННЕАРХАИЧЕСКОГО
ПЕРИОДА
ПОЯВЛЕНИЕ КУЛЬТУРЫ МАЙЯ
расцвет культуры «мирафлорес»
ЦЕНТРАЛЬНАЯ ОБЛАСТЬ МАЙЯ.
КУЛЬТУРА «ТСАКОЛ»
В позднеклассический период искусство майя
ИЦЫ И ГОРОД МАЙЯПАН
МАЙЯ-МЕКСИКАНСКИЕ ДИНАСТИИ
В ЮЖНОЙ ОБЛАСТИ
Государство древних майя
МИРОВОЗЗРЕНИЕ МАЙЯ
Диего де Ланда
Развитие туризма в
Новосибирской области

Туристические фирмы

Для отдыхающих в Краснозерском районе

Колыванский район

Памятники археологии

 

ПОВЕРХНОСТИ

В практике машиностроения широко распространены детали с цилиндрическими, коническими, сферическими, торовыми и винтовыми, поверхностями. Технические формы изделий часто представляют собой комбинацию поверхностей вращения с совпадающими, пересекающимися и скрещивающимися осями. При выполнении чертежей таких изделий возникает необходимость изображения линий пересечения поверхностей, называемых также линиями перехода.

Общим способом построения линий пересечения является нахождение точек этой линии при помощи некоторых вспомогательных секущих плоско­стей или поверхностей называемых иногда «посредниками».

В настоящих методических указаниях рассматриваются общие и част­ные случаи построения линий пересечения двух поверхностей и способы построения разверток поверхностей.

ОСНОВНЫЕ ПОЛОЖЕНИЯ.

В начертательной геометрии поверхность рассматривается как совокупность последовательных положений перемещающейся в пространстве линии, называемой образующей.

Если одну из линий поверхности принять за направляющую q и перемещать по ней по определенному закону образующую l, получим семейство образующих поверхности, определяющих поверхность (рис. 1).

Рис. 1

Для задания поверхности на чертеже введено понятие определителя поверхности.

Определитель – это совокупность условий, необходимых и достаточных для однозначного задания поверхности.

Определитель состоит из геометрической части, содержащей геометрические фигуры, и закона образования поверхности. Например, геометрической частью определителя фигуры a(l, q) на рис.1 являются образующая l и направляющая q, положение которых задано на чертеже. Закон образования: прямая l, перемещаясь в пространстве, всегда касается q, оставаясь параллельной направлению S. Эти условия однозначно определяют цилиндрическую поверхность. Для любой точки пространства можно решить вопрос принадлежности ее поверхности (АÎa, вÏa).

Геометрическая часть определителя конической поверхности b(q, S) состоит из направляющей q и вершины S (рис. 2). Закон образования конической поверхности: образующая прямая l, перемещаясь по направляющей q, всегда проходит через вершину S, образуя непрерывное множество прямых конической поверхности.

Рис. 2.

Поверхности, полученные непрерывным движением, называют кинематическими. Такие поверхности относятся к точным, закономерным, в отличие от незакономерных или случайных.

Поверхности, образованные движением прямой линии, именуют линейчатыми , кривой линией – нелинейчатыми.

По закону движения образующей различают поверхности с поступательным перемещением образующей, с вращательным движением образующей – поверхности вращения, с винтовым движением образующей – винтовые поверхности.

Поверхности могут быть заданы каркасом. Каркасной называют поверхность, которая задается некоторым числом линий, принадлежащих такой поверхности (рис. 3).

Рис. 3.

Зная координаты точек пересечения линий, можно построить чертеж каркасной поверхности.

Поверхности вращения.

В числе кривых поверхностей широко распространены поверхности вращения. Поверхностью вращения называют поверхность, получаемую вращением какой-либо образующей вокруг неподвижной прямой – оси поверхности.

Поверхность вращения может быть образована вращением кривой линии (сфера, тор, параболоид, эллипсоид, гиперболоид и др.) и вращением прямой линии (цилиндр вращения, конус вращения, однополостной гиперболоид вращения).

Из определения поверхности вращения вытекает, что геометрическая часть определителя a(i, l) поверхности вращения a должна состоять из оси вращения i и образующей l. Закон образования поверхности, вращение l вокруг I позволяет построить непрерывное множество последовательных положений образующей поверхности вращения.

Рис. 4.

Из множества линий, которые можно провести на поверхностях вращения, параллели (экватор) и меридианы (главный меридиан) занимают особое положение. Применение этих линий значительно упрощает решение позиционных задач. Рассмотрим эти линии.

Каждая точка образующей l (рис. 4) описывает вокруг оси i окружность, лежащую в плоскости, перпендикулярной оси вращения. Эту окружность можно представить как линию пересечения поверхности некоторой плоскостью (b), перпендикулярной к оси поверхности вращения. Такие окружности называют параллелями (Р). Наибольшую из параллелей именуют экватором, наименьшую – горлом.

Рис. 5 Рис. 6

На рис. 5 параллель РА точки А – экватор, параллель РВ точки R –горло поверхности.

В случае, если ось поверхности i перпендикулярна плоскости проекций, то параллель проецируется на эту плоскость окружностью в истинную величину (Р1А), а на плоскость проекций, параллельную оси – прямой (Р2А), равной диаметру параллели. В этом случае упрощается решение позиционных задач. Связывая любую точку поверхности (например С) с параллелью, легко можно найти положение проекций параллели и точку на ней. На рис. 5 по проекции С2 точки С, принадлежащей поверхности a, с помощью параллели Рс найдена горизонтальная проекция С1.

Плоскость, проходящую через ось вращения, называют меридиональной. На рис. 4 это плоскость g. Линия пересечения поверхности вращения меридиональной плоскостью называется меридианом поверхности. Меридиан, лежащий в плоскости, параллельной плоскости проекций, называется главным (m0 на рис. 4,5). При таком положении меридиан проецируется на плоскость П2 без искажения, а на П1 – прямой параллельной оси Х12. Для цилиндра и конуса меридианы являются прямыми линиями.

Экватор Р2 (рис. 6) и главных меридиан (m) разграничивают поверхность на видимую и невидимую части.

На рис. 6 экватор поверхности a получен в результате сечения поверхности плоскостью d(Р=ad), а главный меридиан – плоскостью g(m=ag).

Туризм