Вычисление пределов, решение матриц примеры решения задач

Начертательная геометрия
и инженерная графика
Технология фотографии
Инженерная графика
Технические чертежи
Начертательная геометрия
Топография
Построение чертежа
Техническая механика
Компьютерная графика и программа Maya
Математика примеры
решения задач
Предел функции, матрица
Вычисление интеграла
Вычисление пределов
Тройной интеграл
Функция нескольких переменных
История искусства
Искусство Европейских стран 17 века
Искусство Европы и России XVIII века
Обзор Европейского и Русского искусства
первой половины 19 века
Искусство второй половины XIX века
Искусство Европы и России
на рубеже 19-20 века
Искусство Европы и России 20 века
Искусство Исламского мира
Искусство Старовавилонского Царства
Искусство Древнего Египетского Царства
Романское и готическое искусство
Искусство Древней Греции
Искусство Древней и Средневековой Индии
Искусство Возрождения в Италии
Искусство эпохи Палеолита
Эпоха Возрождения
Византия
Древнерусское искусство
Зодчество
Архитектура Киевской Руси
Новгородская архитектура XI-ХV столетий
Белокаменное зодчество
Владимиро-суздальской земли
Успенский собор во Владимире
Московский Кремль конца XV-XVII веков
Шатровое зодчество
Собор Василия Блаженного
Памятники русской архитектуры XVII века
Московское барокко
Мозаика и фреска
Монументальная живопись
Владимир
Новгород

Московское государство

Иконопись

Русские иконы древнейшего периода
(XI—XIII века)
Феофан Грек
Андрей Рублев
Дионисий
ИконописьXVI века
ИконописьXVII века
Художественное оформление книги
Искусство художественного оформления
книги в Средневековой России
Стили русского книжного орнамента
Средневековый русский книжный переплет
Ювелирное искусство
Восточное искусство
Искусство Китая
Период Шан-Инь
Период Северная Вэй
Китайская живопись
Фарфор
Искусство Тибета
Искусство Монголии
Искусство Кореи
Искусство Японии
Скульптура
Живопись и графика
Миниатюрная скульптура — нэцкэ
Туриcтические
достопримечательности
Мексика
Остров Пасхи
Белгород
Санкт Петербург
Виды и организация туризма
Культурное наследие народов Майя
Развитие туризма в
Новосибирской области
Курс физики Трофимова
Физические законы механики
Деформации твердого тела
Барометрическая формула
Термодинамика
Электричество и электромагнетизм
Магнитное поле и его характеристики
Природа ферромагнетизма
Механические гармонические колебания
Энергия электромагнитных волн
Оптика
Квантовая физика
Ядерная физика
Полупроводники
Электроника и электротехника
Работа электрических машин и аппаратов
Асинхронный двигатель
Элементы зонной теории твердого тела
Проводниковые материалы
Полупроводниковые материалы
Расчет мостового выпрямителя с фильтром
Туннельный диод
Высокочастотные полевые транзисторы
Электромагнитное поле и параметры сред
Энергия электромагнитного поля
Понятие о магнитном токе
Волны в коаксиальной линии
Теория электрических цепей
Электротехника
Законы Ома и Кирхгофа
Руководство по техническому
обслуживанию ПК
Организация технического обслуживания
История развития персональных
компьютеров
Персональный компьютер фирмы IBM
Документация
Руководство по техническому обслуживанию
Паяльные принадлежности
Измерительные приборы
Тестер сетевой розетки
Разборка и сборка компьютеров
Демонтаж дисководов
Демонтаж блока питания
Демонтаж системной платы
Демонтаж блока питания

Вычислить пределы с помощью правила Лопиталя:

ЗАДАНИЕ 21. Многочлен f(x)=3x4  22x3 + 60x2  73x + 39 по степеням x представить в виде многочлена по степеням (x  2). Известно, что для дифференцируемой 4 раза в точке x0 функции f(x) существует лишь один многочлен, приближающий её в окрестности этой точки с точностью до слагаемого о((x  x0)4)  это многочлен Тейлора обозначим его : f(x) = + о((x  x0)4). В случае, когда сама f(x) является многочленом 4-й степени, получим f(x) = , то есть о((x  x0)4) = 0. Поэтому коэффициенты искомого многочлена можно найти с помощью формулы Тейлора

Исследовать поведение функции в окрестности точки с помощью формулы Тейлора: f(x)=  ln2x, x0 =1.

Найти асимптоты и построить эскизы графиков функций:

Алгебра матриц

Принцип равенства Две действительные матрицы  и  называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.

Сложение матриц Операция сложения определена лишь для матриц одинакового размера.

Умножение матрицы на число

Скалярное умножение арифметических векторов

Умножение матриц Пусть . Для того чтобы, существовало произведение   необходимо выполнение условия согласования , т.е. число столбцов матрицы  должно совпадать с числом строк матрицы  (или порядок строк матрицы  должен совпадать с порядком столбцов матрицы ).

Умножение матриц, вообще говоря, некоммутативно, т.е. .

Реакция произведения матриц на операцию транспонирования выражается формулой Пусть , тогда , , т.е. левая и правая части равенства (1.10) существуют и имеют одинаковые порядки.

  Основные типы алгебраических структур

Теория делимости квадратных матриц Справедливо и обратное утверждение.

 Пусть  и  два произвольных непустых множества. Декартовым произведением  этих множеств называется множество всевозможных упорядоченных пар вида , где . При этом две пары  и , где , считаются равными, если . Если , тогда множество  называется декартовым квадратом множества .

 Если на множестве  определены два внутренних закона композиции, которые записываются как сложение и умножение и обладают свойствами:

 перемена местами двух строк или столбцов; обозначения –   или  соответственно;

Свойства элементарных преобразований. Одно элементарное преобразование первого типа эквивалентно четырем элементарным преобразованиям второго и третьего типов.

Эквивалентные матрицы Отношение эквивалентности

Предложение 1.3 Для любой матрицы  существует л‑эквивалентная ей матрица приведённого вида. Во-первых, любую ненулевую строку матрицы , с помощью строчных элементарных преобразований можно сделать приведённой, т.е. если , тогда найдется конечное число строчных элементарных преобразований, применив которые к матрице , мы получим матрицу , строка которой  имеет приведённый вид.

Пример 7. Построить матрицу  приведённого вида, л‑эквивалентную матрице Среди всех матриц размера  выделим множество диагональных матриц

Отношение эквивалентности   Бинарное отношение  на множестве называется отношением эквивалентности на множестве , если оно удовлетворяет условиям:

Матричные уравнения

Достаточность. Элементарные матрицы обратимы, а произведение обратимых матриц есть матрица обратимая. Поэтому утверждение “матрица, представимая в виде произведения элементарных матриц, обратима” очевидно.

Матричные уравнения Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу. Простейшие матричные уравнения имеют вид

Написать матрицу, транспонированную данным:

 Напомним, что при вычислении произведения двух матриц используется скалярное умножение двух арифметических векторов порядка . Будем называть это скалярное умножение «простым», если , и – «сложным», если  (сокращённо ПСУ и ССУ). Посчитаем количества ПСУ и ССУ, которые необходимо совершить, чтобы вычислить матрицу   указанными выше способами.

 Анализ трёх рассмотренных способов вычисления матрицы  позволяет дать рекомендацию: при вычислении матричных произведений с числом сомножителей больше 2-х целесообразно начинать вычисление произведений с наименьшим числом столбцов у правого сомножителя, и заканчивать вычислением произведений с наибольшим числом столбцов у правого сомножителя. ►

Найти матрицу Введём обозначение для степени матрицы И заметим, что ввиду некоммутативности операции умножения матриц

При вычислении степеней матриц и матричных выражений следует попытаться среди малых степеней  найти максимально простую матрицу с тем, чтобы использовать её для упрощения вычисления матрицы .

Пример 15. Разложить матрицу  в произведение простейших Умножая полученное равенство справа на матрицу

Замечание. В следующей главе, основываясь на данном методе обращения матриц, мы построим более эффективную вычислительную схему для нахождения обратной матрицы, связанную с методом Гаусса решения систем линейных алгебраических уравнений.

Полипропилен 12 мм лист на plastic-system.ru.
История живописи, архитектуры, скульптуры Популярная энциклопедия