Предел функции, матрица, производная примеры решения задач

Начертательная геометрия
и инженерная графика
Технология фотографии
Инженерная графика
Технические чертежи
Начертательная геометрия
Топография
Построение чертежа
Техническая механика
Компьютерная графика и программа Maya
Математика примеры
решения задач
Предел функции, матрица
Вычисление интеграла
Вычисление пределов
Тройной интеграл
Функция нескольких переменных
История искусства
Искусство Европейских стран 17 века
Искусство Европы и России XVIII века
Обзор Европейского и Русского искусства
первой половины 19 века
Искусство второй половины XIX века
Искусство Европы и России
на рубеже 19-20 века
Искусство Европы и России 20 века
Искусство Исламского мира
Искусство Старовавилонского Царства
Искусство Древнего Египетского Царства
Романское и готическое искусство
Искусство Древней Греции
Искусство Древней и Средневековой Индии
Искусство Возрождения в Италии
Искусство эпохи Палеолита
Эпоха Возрождения
Византия
Древнерусское искусство
Зодчество
Архитектура Киевской Руси
Новгородская архитектура XI-ХV столетий
Белокаменное зодчество
Владимиро-суздальской земли
Успенский собор во Владимире
Московский Кремль конца XV-XVII веков
Шатровое зодчество
Собор Василия Блаженного
Памятники русской архитектуры XVII века
Московское барокко
Мозаика и фреска
Монументальная живопись
Владимир
Новгород

Московское государство

Иконопись

Русские иконы древнейшего периода
(XI—XIII века)
Феофан Грек
Андрей Рублев
Дионисий
ИконописьXVI века
ИконописьXVII века
Художественное оформление книги
Искусство художественного оформления
книги в Средневековой России
Стили русского книжного орнамента
Средневековый русский книжный переплет
Ювелирное искусство
Восточное искусство
Искусство Китая
Период Шан-Инь
Период Северная Вэй
Китайская живопись
Фарфор
Искусство Тибета
Искусство Монголии
Искусство Кореи
Искусство Японии
Скульптура
Живопись и графика
Миниатюрная скульптура — нэцкэ
Туриcтические
достопримечательности
Мексика
Остров Пасхи
Белгород
Санкт Петербург
Виды и организация туризма
Культурное наследие народов Майя
Развитие туризма в
Новосибирской области
Курс физики Трофимова
Физические законы механики
Деформации твердого тела
Барометрическая формула
Термодинамика
Электричество и электромагнетизм
Магнитное поле и его характеристики
Природа ферромагнетизма
Механические гармонические колебания
Энергия электромагнитных волн
Оптика
Квантовая физика
Ядерная физика
Полупроводники
Электроника и электротехника
Работа электрических машин и аппаратов
Асинхронный двигатель
Элементы зонной теории твердого тела
Проводниковые материалы
Полупроводниковые материалы
Расчет мостового выпрямителя с фильтром
Туннельный диод
Высокочастотные полевые транзисторы
Электромагнитное поле и параметры сред
Энергия электромагнитного поля
Понятие о магнитном токе
Волны в коаксиальной линии
Теория электрических цепей
Электротехника
Законы Ома и Кирхгофа
Руководство по техническому
обслуживанию ПК
Организация технического обслуживания
История развития персональных
компьютеров
Персональный компьютер фирмы IBM
Документация
Руководство по техническому обслуживанию
Паяльные принадлежности
Измерительные приборы
Тестер сетевой розетки
Разборка и сборка компьютеров
Демонтаж дисководов
Демонтаж блока питания
Демонтаж системной платы
Демонтаж блока питания

 Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.Поэтому первым действием при вычислении предела функции является подстановка значения аргумента

 Решение: В данной матрице 2 строки и 3 столбца, значит, это матрица размера 2

Обратная матрица. Матричные уравнения. Системы линейных алгебраических уравнений.

Найти координаты векторов  . Решение: Для того, чтобы найти координаты вектора, следует из координат конца вектора (вторая указанная в его названии точка) вычесть координаты начала (первая точка):

Даны точки: А(1;0), В(3;1), С(-2;5) Написать уравнение прямой (АВ) и найти точки пересечения этой прямой с осями координат

Представление некоторых элементарных функций по формуле Тейлора Применение формулы Тейлора для разложения функций в степенной ряд широко используется и имеет огромное значение при проведении различных математических расчетов. Непосредственное вычисление интегралов некоторых функций может быть сопряжено со значительными трудностями, а замена функции степенным рядом позволяет значительно упростить задачу.

Предел последовательности Задания для подготовки к практическому занятию Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…).

Понятие предела последовательности поясним пока на простых примерах: Определение производной функции, ее геометрический и физический смысл, ее свойства подробно описаны в §13 лекций.

Дифференциал функции Пример. Дана функция . Найти ее первый дифференциал dy Решение: Воспользуемся формулой первого дифференциала.

Неопределенный интеграл. Табличное интегрирование.

Замена переменной; интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций

С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить.

Интегрирование простейших иррациональных выражений

Полное приращение и полный дифференциал ФНП Полным приращением функции двух переменных z= f (xy) в точке (xy), вызванным приращениями аргументов  и , называется выражение .

Задача. Найти частные производные и , если переменные x<, y, и z< связаны равенством 4 x2y<  ez< – cos(x3< – z<) + 2 y<2 + 3x< = 0.

Дана функция двух переменных: z = x2xy + y2– 4x+ 2y + 5 и уравнения границ замкнутой области D на плоскости xОy:x = 0, y = –1, x + y= 3. 

Задача Поверхность задана уравнением z <=  + xy< – 5 x<3 . Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x<0 , y<0 , z<0 ), принадлежащей ей, если x<0 = –1, y0< = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

Задача. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области  D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Задача Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0.

Задача Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точкуN(–1,2,3).

История живописи, архитектуры, скульптуры Популярная энциклопедия