Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Линейный трансформатор Порядок выполнения лабораторных работ Комплексные частотные характеристики цепей Последовательный колебательный контур Параллельный колебательный контур

Электротехника и теория цепей Законы Ома и Кирхгофа Анализ электрических цепей

Анализ сложных линейных цепей

Цель работы

Освоение и сравнение методов расчета сложных электрических цепей при гармоническом воздействии: методов контурных токов, узловых напряжений и метода наложения. Экспериментальная проверка правильности расчета.

Основные теоретические положения

Метод контурных токов основан на важной топологической особенности электрических цепей: токи всех ветвей цепи могут быть выражены через токи главных ветвей.

Для определения токов главных ветвей (контурных токов) составляют систему из контурных уравнений.

На практике контурные уравнения формируют не прибегая к составлению основной системы уравнений электрического равновесия, поэтому применение этого метода позволяет упростить и составление, и решение уравнений электрического равновесия цепи.

В матричной форме система контурных уравнений запишется в следующем виде: Расчет простых цепей постоянного тока .

,

где Zij – матрица сопротивлений контуров,

Iii – матрица контурных токов,

Еii – матрица контурных ЭДС.

Правила составления контурных уравнений:

1. Формирование Zij.

Zii - собственное сопротивление i-гo контура, сумма сопротивлений всех ветвей, входящих в этот контур. Zij - взаимное, или общее, сопротивление i-гo и j-го контуров - сопротивление, равное сумме сопротивлений ветвей, общих для этих контуров. Взаимное сопротивление берется со знаком плюс, если контурные токи рассматриваемых контуров протекают через общие для этих контуров ветви в одинаковом направлении; если контурные токи в общих ветвях имеют противоположные направления, то взаимное сопротивление берут со знаком минус. Если рассматриваемые контуры не имеют общих ветвей, то их взаимное сопротивление равно нулю.

Для линейных цепей, составленных только из сопротивлений, емкостей, индуктивностей и независимых источников напряжения, матрица контурных сопротивлений квадратная и симметричная относительно главной диагонали.

2. Формирование Iii.

Это матрица-столбец неизвестных контурных токов.

3. Формирование Еii.

Контурная э. д. с. Еii i-гo контура – это алгебраическая сумма э. д. с. всех идеализированных источников напряжения, входящих в данный контур. Если направление э. д. с. какого-либо источника, входящего в i-й контур, совпадает с направлением контурного тока этого контура, то соответствующая э. д. с. входит в Eii со знаком плюс, в противном случае — со знаком минус.

Решая систему контурных уравнений любым из методов, можно найти все неизвестные контурные токи цепи.

Например, выражение для контурного тока kk-го контура при использовании формулы Крамера:

где — определитель системы уравнений; ij— алгебраическое дополнение элемента Zij этого определителя. На практике обычно используют более экономичные методы, такие, как метод исключения Гаусса.

Если электрическая цепь содержит независимые источники тока, то следует заменить источники тока независимыми источниками напряжения с помощью эквивалентных преобразований, либо выбрать дерево цепи таким образом, чтобы ветви с источниками тока вошли в состав главных ветвей. Количество неизвестных контурных токов сокращается при этом на число независимых источников тока. Матрица контурных сопротивлений в этом случае будет не квадратной: число столбцов будет равно числу независимых контуров, а число строк — числу неизвестных контурных токов.

Метод формирования уравнений электрического равновесия цепи, в котором в качестве независимых переменных используются неизвестные напряжения независимых узлов относительно базисного, называется методом узловых напряжений. Напряжения всех ветвей электрической цепи могут быть выражены через узловые напряжения этой цепи т.е. напряжения независимых узлов рассматриваемой цепи относительно базисного.

На практике узловые уравнения формируют не прибегая к составлению основной системы уравнений электрического равновесия, поэтому применение этого метода позволяет упростить и составление, и решение уравнений электрического равновесия цепи.

В матричной форме система узловых уравнений запишется в следующем виде:

,

где Yij – матрица проводимостей узлов,

Ui0 – матрица напряжений узлов,

Ji0 – матрица узловых токов.


Топологические  графы электрических цепей