Начертательная геометрия и инженерная графика, черчение Электротехника

Физика
Задачи

Алгебра

Матанализ
ПЭВМ

Инженерная графика

ГРАФИЧЕСКОЕ ОФОРМЛЕНИЕ ЧЕРТЕЖЕЙ Выполнение линий

Выполнение чертежного шрифта ГОСТ 2.304-81* устанавливает чертежные шрифты, наносимые на чертежи и другие технические документы всех отраслей промышленности и строительства.

Деление окружности на равные части и построение сопряжений Задание . При выполнении чертежей деталей встречаются случаи (рис.16), где требуется деление окружности на равные части, которое выполняют с помощью треугольников и циркуля, применяя также таблицу коэффициентов.

Построение лекальных кривых В машиностроительном черчении часто приходится прибегать к вычерчиванию кривых, состоящих из ряда сопряженных частей, которые невозможно провести циркулем.

Точка, прямая, плоскость и способы преобразования проекций Проекционное черчение базируется на начертательной геометрии, в которой изучаются способы изображения форм пространственных предметов на плоскости.

Единая система конструкторской документации

Сечение тел плоскостями и развертки их поверхностей Детали очень часто имеют формы, представляющие собой различные геометрические поверхности, рассеченные плоскостями.

Изображения – виды, сечения, разрезы Изображения предметов на чертежах выполняют по методу прямоугольного проецирования, изучаемому в начертательной геометрии.

Резьбовые изделия и соединения Задания этой главы посвящены вопросам, касающимся понятий параметров и изображений резьбовых изделий и резьбовых соединений.

Выполнение чертежей зубчатых и червячных передач На чертежах поверхность и образующую вершин зубьев показывают сплошными основными линиями, поверхность и образующую впадин допускается показывать сплошными тонкими линиями. Делительные (и начальные) окружности показывают штрихпунктирными линиями

КЛИНОВЫЕ ШПОНКИ Клиновые шпонки выполняют в виде клина с уклоном 1:100. Торцы клиновых шпонок могут быть скругленными (исполнение 1) или плоскими (исполнение 2,3). Выполняют клиновые шпонки с головкой или без головки.

Шлицевые соединения – это многошпоночные соединения, в которых шлицы выполнены заодно с изделием(валом, втулкой). Шлицевые соединения изготавливают с зубьями прямоугольной, эвольвентной и треугольной формы.

Условные изображения зубчатых (шлицевых) соединений и их деталей устанавливает ГОСТ 2.409-74*.

ПРАВИЛА ВЫПОЛНЕНИЯ РАБОЧИХ ЧЕРТЕЖЕЙ ЗУБЧАТЫХ ВАЛОВ И ОТВЕРСТИЙ

ПОВЕРХНОСТИ В практике машиностроения широко распространены детали с цилиндрическими, коническими, сферическими, торовыми и винтовыми, поверхностями. Технические формы изделий часто представляют собой комбинацию поверхностей вращения с совпадающими, пересекающимися и скрещивающимися осями. При выполнении чертежей таких изделий возникает необходимость изображения линий пересечения поверхностей, называемых также линиями перехода.

Очерк поверхности. Проецирующая поверхность, облегающая заданную, пересекает плоскость проекций по линии, называемой очерком проекции поверхности. Другими словами, очерк поверхности – это линия, разграничивающая проекцию фигуры от остального пространства чертежа. Для построения очерка необходимо построить крайние граничные очерковые образующие. Очерковые образующие лежат в плоскости, параллельной плоскости проекций.

Выполнение технического рисунка и аксонометрии детали

Линейчатые поверхности с плоскостью параллелизма образуются перемещением прямолинейной образующей по двум направляющим. При этом образующая во всех своих положениях сохраняет параллельность некоторой заданной плоскости, называемой плоскостью параллелизма.

Вспомогательные секущие поверхности иногда называются «посредниками». [an error occurred while processing this directive]

Способ сфер. Этот прием применяется в случае, когда оси поверхностей вращения пересекаются

Построение развёрток. Развёрткой поверхности называется фигура, получаемая совмещением развёртываемой поверхности с плоскостью.

Развёртки кривых поверхностей. Теоретически можно получить точную развёртку, т.е. развёртку, в точности повторяющую размеры развёртываемой поверхности. Практически, при выполнении чертежей, приходится мириться с приближённым решением задачи, если предположить, что отдельные элементы поверхности аппроксимируются отсеками плоскостей. При таких условиях выполнение приближённых развёрток цилиндра и конуса сводится к построению развёрток вписанных в них (или описанных) призмы и пирамиды.

Известно, что все машины и механизмы состоят из отдельных деталей. Эти детали, входящие в изделия непосредственно или в составе промежуточных сборочных единиц, объединяются между собой при помощи различных сборочных операций (завинчивание, запрессовка, сварка, пайка и т.д.). В результате образуются различные разъемные и неразъемные соединения. Неразъемным принято считать соединение, при разборе которого повреждаются детали. В противном случае – соединение разъемное.

Детали резьбовых соединений Подавляющее большинство деталей резьбовых соединений (болтов, гаек, шпилек, винтов, шайб) стандартизировано. Как правило, они изготавливаются по Государственным стандартам (ГОСТам). Лишь некоторые из них, в особо ответственных и технически обоснованных случаях, могут изготавливаться по отраслевым стандартам или даже по отдельным чертежам.

СОЕДИНЕНИЕ ШПИЛЬКОЙ Шпилька – цилиндрический стержень, имеющий резьбу с двух сторон и предназначенный для соединения двух или несколько деталей. Одним резьбовым концом шпилька ввинчивается в деталь (как правило, в деталь корпусную, массивную). Длина ввинчиваемого резьбового конца l1, где x – длина участка сбега резьбы, т.е. резьбы неполного профиля.

СОЕДИНЕНИЕ ВИНТОМ Крепежный винт – деталь, имеющая цилиндрический стержень с резьбой и головку. Головки винтов могут иметь различную форму. Наибольшее распространение получили крепежные винты с цилиндрической головкой по ГОСТ 1491-80, винты с полукруглой головкой по ГОСТ 17473-80, винты с полупотайной головкой по ГОСТ 17474-80 и винты с потайной головкой по ГОСТ 17475-80.

ЗУБЧАТАЯ ПЕРЕДАЧА В настоящей работе студенты выполняют простейшие расчеты и изображения в соответствии с ГОСТ 2.402-68 цилиндрической эвольвентной зубчатой передачи. Одним из основных параметров зубчатой передачи является модуль m – параметр, характеризующий размеры зуба и окружной шаг зубчатого зацепления.

СВАРОЧНОЕ СОЕДИНЕНИЕВ зависимости от номера варианта студент выполняет на чертеже либо угловое, либо тавровое, либо нахлесточное, либо стыковое

КЛЕЕНОЕ СОЕДИНЕНИЕ Выполняется клееное соединение двух плоских деталей

Методические указания к выполнению эскизов и рабочих чертежей деталей Деталью называется изделие, изготовленное из однородного материала без применения сборочных операций. Любая деталь состоит из простых геометрических фигур – призм, цилиндров, сфер и т.д. Части детали, имеющие определенное назначение, называются элементами детали ( стержень, отверстие, буртик, галтель, паз, резьба, фаска, проточка и т.п.)

Образмеривание элементов детали Размерные числа для эскизов получают путем обмера элементов детали. Классификация методов и средств измерения изучаются в курсе “Взаимозаменяемость, стандартизация и техниче­ские измерения”. Здесь приведем простейшие измерительные инструменты и способы обмера деталей, применяемые в учебной практике при снятии эскизов

Размеры. На чертежах деталей проставляются размеры, необходимые для их изготовления и контроля. Количество размеров должно быть минимальным, но достаточным. Нанесение размеров зависит от положения детали в изделии и от способа ее изготовления. Размеры на чертеже в соответствии с ГОСТ 2.307-68 могут быть проставлены одним из трех способов: цепным, координатным или комбиниро­ванным с учетом выбранных баз

Примеры выполнения чертежей оригинальных деталей Геометрические формы деталей разнообразны. Существует классификатор ЕСКД, который выделяет 6 классов с подразделением на подклассы, группы и подгруппы, виды. Рассмотрим чертежи некоторых наиболее распространенных типов оригинальных деталей.

Выполнение технического рисунка и аксонометрии детали Технический рисунок детали выполняется по эскизу. Он может быть выполнен на свободном поле фор­мата вместе с эскизом, или на отдельном формате с ос­новной надписью. Он является ее наглядным изображением, выполненным по правилам построения аксонометрических проекций от руки (на глаз), с соблюдением пропорций в размерах элементов детали. Технический рисунок можно назвать аксонометрическим эскизом. Основной задачей технического рисования является приобретение навыков работы карандашом без применения чертежных инструментов.

Требования ЕСКД к составлению КД Спецификация это перечень составных частей, которые входят в изделие и КД, относящихся к этому изделию. Она является основным КД для сборочной единицы.

Обозначение технической документации. ГОСТ 2.202-80 устанавливает единую обезличенную структуру обозначения изделий и конструкторских документов для всех отраслей промышленности (рис. 3.5а). Код организации-разработчика назначается по кодификатору. Код классификационной характеристики присваивается по классификатору ЕСКД. Все изделия, входящие в классификатор ЕСКД, подразделяются на специфицируемые (сборочные единицы, комплексы, комплекты) и неспецифицируемые (детали).

Рекомендации по выполнению схем. Схема – конструкторский документ, на котором показаны в виде условных изображений и обозначений составные части изделия и связи между ними. Схемами пользуются тогда, когда достаточно показать лишь устройство или принцип работы изделия

Начертательная геометрия

Задача. Построить линию пересечения треугольника ABC и параллелограмма DEFG. Точку G определить графически. Записать алгоритм решения задачи в пространстве. Задачу решить на двухкартинном комплексном чертеже в масштабе 1:1. Видимые части плоскостей выделить цветом.

Пересечение плоскостей

Напомним в общих чертах решение задачи на построение линии пересечения двух плоскостей. Искомая прямая строится по двум точкам. Эти точки определяются с помощью двух плоскостей-посредников. Каждый посредник пересекает заданные плоскости по двум прямым. Точка пересечения этих прямых принадлежит искомой линии.

Методические указания и примеры решения Искомая линия пересечения поверхностей строится по нескольким точкам. Точки определяются с помощью поверхностей-посредни­ков. Каждый посредник пересекает заданные поверхности по двум линиям. Точки пересечения этих линий принадлежат искомой линии. Точность построения искомой линии тем выше, чем больше точек будет построено. Трудоёмкость и точность графических построений определяется выбором посредников. Посредники должны пересекать­ся с данными поверхностями по линиям, которые проецируются в прямые и окружности. Это исследовательская часть работы.

Симметричные точки относительно плоскости находятся на одном перпендикуляре к плоскости по разные стороны от неё и на одинаковом расстоянии. Независимо от способа преобразования перпендикуляр должен быть спроецирован в натуральную величину. Он должен стать параллельным плоскости проекций. Для этого плоскость симметрии надо перевести в положение плоскости уровня.

Комплексный чертеж точки Как теперь перейти от объемной модели проецирования к плоскому комплексному чертежу?

В начертательной геометрии широко, а в техническом черчении – преимущественно, используется безосный комплексный чертеж. В отличие от чертежа с осями проекций безосный комплексный чертеж применяется в тех случаях, когда отсутствует необходимость отражать положение каждой точки предмета относительно плоскостей проекций, когда достаточно иметь представление о положении точек только относительно друг друга.

Способы задания геометрических фигур. Два способа задания геометрических фигур: кинематический и статический.

Кривая линия общего вида Ограничимся кривыми линиями общего вида. Под которыми следует понимать плоские и пространственные кривые, не имеющие определенно выраженного закона образования. Для задания таких линий требуется: теоретически бесконечное, а практически – разумное конечное число точек. Для подобных кривых наиболее часто встречается задача на построение третьей ее проекции по двум заданным.

Общие понятия взаимопринадлежности Элементарная (основная) задача на принадлежность, без которой бесполезно пытаться решать любую задачу на ту же тему, - это задача на принадлежность точки к плоскости или к любой криволинейной поверхности

Прямая и точка на плоскости

Пример. Построить фронтальную проекцию линию, принадлежащей закрытому тору. Для решения задачи есть возможность использовать способ образующих с простыми проекциями.

Пример Построить линию пересечения конической поверхности с горизонтально проецирующим цилиндром. Горизонтальная проекция линии пересечения совпадает с вырожденной проекцией цилиндрической поверхности. Остаётся построить фронтальную проекцию этой линии. Решив по сути дела задачу на принадлежность кривой линии к поверхности конуса при наличии ее одной проекции. Для этого на поверхности конуса необходимо задать каркас из прямолинейных образующих, построить точки пересечения линии с элементами каркаса и по фронтальным проекциям этих точек провести недостающую проекцию линии пересечения.

Построить линию пересечения закрытого тора и полусферы. Горизонтальные проецирующие секущие плоскости пересекают заданные поверхности по вспомогательным окружностям с простыми проекциями. Пересекаясь попарно окружности определяют точки, принадлежащие линии пересечения заданных поверхностей.

ПРЕОБРАЗОВАНИЕ КОМПЛЕКСНОГО ЧЕРТЕЖА И СПОСОБ ПРЯМОУГОЛЬНОГО ТРЕУГОЛЬНИКА Основные задачи преобразования

Пример. Треугольник (АВС) спроецировать в натуральную величину и в прямую линию. (3 и 4 задачи преобразования).

Параллельность прямых и плоскостей Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Линия наибольшего наклона на плоскости

Классификация метрических задач (определение углов и расстояний) Решения метрических задач основаны на применении практически всех предыдущих разделов курса начертательной геометрии. Включая прежде всего взаимопринадлежность и пересечение геометрических фигур, параллельность и перпендикулярность и способы преобразования комплексного чертежа.

СТАНДАРТНАЯ ОРТОГОНАЛЬНАЯ АКСОНОМЕТРИ

История искусства

Искусство Европейских стран 17 века

Архитектура и скульптура Барокко

Искусство Испании

Искусство Фландрии

Искусство Голландии

Искусство Франции

Искусство Европы и России XVIII века

Обзор Европейского и Русского искусства
первой половины 19 века

Искусство второй половины XIX века

Искусство Европы и России на рубеже 19-20 века

Искусство Возрождения в Италии

Проторенессанс

Раннее Возрождение в Италии

Высокое Возрождение в Италии

Позднее Возрождение в Италии

Искусство Возрождения в Нидерландах, Франции, Германии

Романское и готическое искусство Западной Европы

Баухауз

Зарубежное искусство

Искусство России

Искусство Доколумбовой Америки

Компьютерная графика и программа Maya

Искусство Исламского мира

Искусство древней Передней Азии

Искусство Древней и Средневековой Индии

Архитектура Киевской Руси

Искусство Древнего Египетского Царства

Искусство Древней Греции

Искусство первобытных людей

Крит и Микены

Древняя Эллада

Искусство Китая, Тибета, Монголии, Японии

Искусство Византийской Империи и стран византийского круга

Туриcтические достопримечательности

Виды и организация туризма

Культурное наследие народов Майя

Развитие туризма в Новосибирской области

Остров Пасхи

Мексика

Белгород

Санкт Петербург

Физика

Физические законы механики

Деформации твердого тела

Барометрическая формула

Термодинамика

Электричество и электромагнетизм

Магнитное поле и его характеристики

Природа ферромагнетизма

Механические гармонические колебания

Энергия электромагнитных волн

Оптика

Квантовая физика

Ядерная физика

Полупроводники

Физика твердого тела

Математика

Вычисление интеграла

Вычисление пределов

Тройной интеграл

Функция нескольких переменных

Дифференциальные уравнения

Векторная алгебра

Введение в анализ

Элементы линейного программирования

Найти область сходимости функционального ряда

Аналитическая геометрия

Электротехника

Идеализированные пассивные элементы Сопротивление.

Емкость Емкостью называется идеализированный элемент электрической цепи, обладающий свойством запасать энергию электрического поля, причем запасания энергии магнитного поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Индуктивность Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля.

Схемы замещения реальных элементов электрических цепей При описании идеализированных пассивных элементов электрических цепей подчеркивалось, что каждый из этих элементов отражает только одну существенную особенность электромагнитных процессов, имеющих место в реальных элементах электрических цепей.

Идеальный источник тока - это идеализированный активный элемент, ток которого не зависит от напряжения на его зажимах.

Схемы замещения реальных источников Свойства реальных источников энергиизначительно отличаются от свойств идеализированных активных элементов.

Управляемые источники тока и напряжения Идеальные источники тока и напряжения могут быть либо неуправляемыми (независимыми), либо управляемыми (зависимыми).

Топологическое описание электрических схем. Основные законы теории цепей. Эроххвидеос.тв редкое порно бесплатно

Топологические  графы электрических цепей В общем случае граф есть совокупность отрезков произвольной длины и формы, называемых ветвями (рёбрами), и точек их соединения, называемых узлами (вершинами).

Топологические матрицы служат для аналитического описания графов.

Уравнения электрического равновесия Любую электрическую цепь можно рассматривать как систему с одним или несколькими входами и одним или несколькими выходами.

Режим гармонических колебаний в линейных цепях. Метод комплексных амплитуд.

Метод комплексных амплитуд Понятие о символических методах.

Комплексные сопротивление и проводимость участка цепи Рассмотрим произвольную линейную цепь с сосредоточенными параметрами, находящуюся под гармоническим воздействием.

Порядок выполнения лабораторных работ Целью лабораторного практикума по курсу "Основы теории цепей" является экспериментальное подтверждение основных теоретических разделов курса, ознакомление с некоторыми измерительным приборами и овладение методикой основных электрических измерений.

Измерение разности фаз Работа с генератором, осциллографом.

Описание приборов Генератор сигналов низкочастотный GFG – 8219A .

Проведение измерений Измерение пикового значения напряжения.

Назначение Вольтметр универсальный В7-77 предназначен для измерения постоянного и переменного напряжения, постоянного и переменного тока, электрического сопротивления постоянному току, тестирования полупроводниковых диодов и проверки электрических цепей на короткое замыкание (“прозвонка”).

Измеритель разности фаз (фазометр) предназначен для измере­ния разности фаз между двумя электрическими сигналами переменно­го тока произвольной формы.

Простейшие электрические цепи при гармоническом воздействии 1. Цель работы Освоение метода комплексных амплитуд и экспериментальная проверка амплитудных и фазовых соотношений в линейных цепях при гармоническом воздействии.

Анализ сложных линейных цепей Цель работы Освоение и сравнение методов расчета сложных электрических цепей при гармоническом воздействии: методов контурных токов, узловых напряжений и метода наложения. Экспериментальная проверка правильности расчета.

Индуктивно-связанные цепи. Цель работы Овладение методами расчета и измерения параметров цепей с взаимной индуктивностью. Экспериментальное определение основных параметров трансформаторов.

Исследование частотных характеристик. Цель работы Расчет и экспериментальная проверка амплитудно-частотных и фазочастотных характеристик цепей первого и второго порядка.

Избирательные свойства колебательного контура определяются формой нормированной АЧХ.

Связанные колебательные контуры. Цель работы Практическое знакомство и проверка правильности соотношений, описывающих амплитудно-частотные характеристики (АЧХ) двух индуктивно связанных контуров, изучение способов настройки системы связанных контуров.

Настройка контуров. Для получения качественных результатов необходимо соблюдать аккуратность: после настройки контуров нельзя отключать от схемы измерительные приборы (или подключать дополнительные), изменять емкости контуров.

Комплексная схема замещения цепи. Законы Ома и Кирхгофа в комплексной форме.

Общая схема применения метода комплексных амплитуд Анализ цепей методом комплексных, амплитуд содержит следующие этапы: замена гармонических, токов и напряжений всех ветвей их комплексными изображениями, а эквивалентной схемы цепи для мгновенных значений – комплексной схемой замещения;

Последовательная RLC-цепь Рассмотрим последовательную RLC-цепь, находящуюся под гармоническим воздействием, комплексная схема замещения которой приведена на рис. 5.2, б.

Энергетические процессы в цепях при гармоническом воздействии Мгновенная, активная, реактивная, полная и комплексная мощности.

Баланс мощностей Рассмотрим произвольную электрическую цепь, содержащую  идеальных источников напряжения,  идеальных источников тока и  идеализированных пассивных элементов.

Согласование источника энергии с нагрузкой Рассмотрим электрическую цепь, состоящую из источника энергии и нагрузки.

Методы анализа линейных электрических цепей при гармоническом воздействии Методы формирования уравнений электрического равновесия цепи, основанные на непосредственном применении законов Кирхгофа. [an error occurred while processing this directive]

Метод контурных токов основан на важной топологической особенности электрических цепей: токи всех ветвей цепи могут быть выражены через токи главных ветвей.

Метод узловых напряжений Напряжения всех ветвей электрической цепи могут быть выражены через узловые напряжения этой цепи т.е. напряжения независимых узлов рассматриваемой цепи относительно базисного.

Основные теоремы теории цепей Теорема наложения (суперпозиции). взаимности (обратимости). компенсации. об эквивалентном источнике (эквивалентном генераторе).

Теорема компенсации Токи и напряжения произвольной электрической цепи не изменятся, если любую ветвь этой заменить либо идеальным источником напряжения, э.д.с. которого равна напряжению данной ветви направлена противоположно этому напряжению, тока, ток равен току рассматриваемой совпадает с ним по направлению.

Теорема об эквивалентном источнике (эквивалентном генераторе).

Методы анализа цепей, ориентированные на применение средств вычислительной техники Общие представления о программах машинного анализа цепей.

Формирование топологических уравнений цепи Топологические свойства цепи полностью определяются ее графом, которому ставятся в соответствие топологические матрицы: матрица узлов А, главных контуров В, матрицу сечений Q и др.

Метод переменных состояния Наличие интегралов в уравнениях электрического равновесия цепи, составленных методами узловых напряжений и контурных токов, значительно затрудняет решение этих уравнений течение длительного времени ограничивало возможности применения данных методов при машинном анализе цепей.

Эквивалентные преобразования участков цепей со связанными индуктивностями Рассмотрим эквивалентные преобразования участков цепей, содержащих связанные индуктивности.

Связанные индуктивности с одной общей точкой Найдем схему замещения участка цепи, содержащего две связанные индуктивности, включенные таким образом, что они имеют одну общую точку

Анализ электрических цепей в частотной области Комплексные частотные характеристики цепей и деализированных двухполюсных пассивных элементов. цепей с одним энергоемким элементом.

Комплексные частотные характеристики идеализированных двухполюсных пассивных элементов Идеализированные двухполюсные пассивные элементы обладают только входными КЧХ, так как у них имеется одна пара внешних выводов.

Комплексные частотные характеристики цепей с одним энергоемким элементом Рассмотрим комплексные частотные характеристики простейших цепей, схема замещения которых имеет вид рис. 12.5.

Резонанс в электрических цепях Определение резонанса.

Последовательный колебательный контур представляет собой электрическую цепь, содержащую индуктивную катушку и конденсатор, включенные последовательно с источником энергии

Энергетические процессы в последовательном колебательном контуре Пусть резонансная частота контура совпадает с частотой источника колебаний.

Частотные характеристики последовательного колебательного контура Виды частотных характеристик. Входная проводимость.

Передаточные характеристики контура по напряжению Передаточные характеристики контура по напряжению рассмотрим в режиме холостого хода.

Параллельный колебательный контур основного вида. при последовательной схеме замещения элементов. Колебательные контуры с неполным включением реактивного элемента.

Параллельный колебательный контур основного вида Идеализированные цепи, схемы которых приведены на рис. 15.1, б и 15.2, в, являются дуальными, поэтому при рассмотрении процессов в параллельном колебательном контуре основного типа можно воспользоваться всеми выражениями, полученными для последовательного колебательного контура, произведя них взаимные замены токов напряжений, сопротивлений проводимостей, емкостей индуктивностей.

Колебательный контур с неполным включением ёмкости Колебательный контур этого типа по своим свойствам в значительной степени подобен параллельному колебательному контуру с неполным включением индуктивности.

Работа электрических машин и аппаратов, а также электроизмерительных приборов основана на использовании электромеханического и индуктивного действий магнитного поля. Чтобы использовать эти явления, в рабочем объеме названных электротехнических устройств, необходимо создать магнитное поле заданной интенсивности и конфигурации. Часть электротехнического устройства, содержащая ферромагнитные тела, предназначенная для создания магнитного поля, называется магнитной цепью.

Асинхронный двигатель предложен в 1889 г. Русским электротехником М.О.Доливо-Добровольским. Предложенная конструкция была настолько проста, что в основном сохранилась до настоящего времени. Из большого количества двигателей, эксплуатирующихся в промышленности и сельском хозяйстве, 90-95% приходится на асинхронные двигатели. Устройство и принцип действия асинхронного двигателя.

Элементы зонной теории твердого тела Все тела, в зависимости от их электрических свойств, условно могут быть отнесены к одной из трех групп: 1) проводники; 2) полупроводники; 3) диэлектрики. На макроскопическом уровне разница между этими группами веществ видится в их различной электропроводности при одинаковых условиях. Но возникает вопрос, а почему сильно разнятся электропроводности проводников и диэлектриков, полупроводников и проводников? Ответ на этот вопрос нужно искать в микростроении веществ, относящихся к той или иной группе.

Проводниковые материалы Металлические проводниковые материалы разделяются на материалы высокой проводимости и материалы высокого сопротивления. Материалы высокой проводимости используются для изготовления проводов, обмоток электрических машин и аппаратов, электроизмерительных приборов и т.д. Материалы высокого сопротивления применяются в электронагревательных устройствах, лампах накаливания, реостатах и т.п. Металлические проводниковые материалы характеризуются удельным сопротивлением, температурными коэффициентами удельного сопротивления и линейного расширения, пределом прочности при растяжении и относительным удлинением при разрыве.

Полупроводниковые материалы Полупроводники - группа веществ с электронной проводимостью, удельное сопротивление которых при нормальной температуре лежит между удельными сопротивлениями проводников и диэлектриков. Удельное сопротивление различных проводников лежит в пределах 10 -6-10 -3, полупроводников - 10 -4-10 10, диэлектриков - 10 9-10 18 Ом . см. Однако, количественная оценка электропроводности не является основным признаком, выделяющим полупроводники в особую группу веществ. Электропроводность полупроводников качественно отличается от электропроводности проводников.

Расчет мостового выпрямителя с фильтром

Туннельный диод относится к группе полупроводниковых приборов, вольт-амперные характеристики которых имеют участок, соответствующий отрицательному дифференциальному сопротивлению прибора. Туннельный диод применяется как многофункциональный прибор (усиление, генерация, переключение и др.) для работы преимущественно в области СВЧ. Он может работать и на более низких частотах, однако его эффективность в этом случае значительно ниже, чем, например, транзистора.

Высокочастотные полевые транзисторы. Характеристики и параметры Полевым транзистором называется полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал, управляемый электрическим полем. Полевые транзисторы были запатентованы в Англии в 1939 г., задолго до появления БT. Kонструктивно-технологические отличия ПT, вытекающие из их принципа действия, позволяют повысить частотную границу СВЧ-транзисторных устройств по сравнению с устройствами на основе БT.

Электромагнитное поле и параметры сред. Современная физика признает 2 формы существования материи: вещество и поле. Нам известны многие разновидности полей: электромагнитные, силовые, внутриядерных и других взаимодействий. Во многом свойства их сходны. Вещество состоит из дискретных элементов (молекул, атомов ...). Движущееся электромагнитное поле тоже можно представить в виде потока дискретных частиц — фотонов. Электромагнитное поле характеризуется энергией, массой, импульсом. Масса и импульс характерны только движущемуся электромагнитному полю (электромагнитное поле не имеет массы покоя). Энергия электромагнитного поля может преобразовываться в другие виды энергии. Электромагнитное поле подвержено действию гравитационных сил. С другой стороны поток материальных частиц способен реализовать явление дифракции, интерференции, которые присущи электромагнитным волнам

Энергия электромагнитного поля. Баланс энергий электромагнитного поля. Как и любая форма материи, электромагнитное поле обладает энергией, которая может распространяться в пространстве и преобразоваться в другие виды энергии. Сформулируем уравнение баланса электромагнитного поля применительно к некоторому объему V, ограниченному поверхностью S. Пусть, в этом объеме, за счет сторонних источников, выделяется электромагнитная энергия. Из общефизических соображений, очевидно, что мощность сторонних источников будет расходоваться на потери, на изменение энергии и частично будет рассеиваться на поверхности S, уходя во внешнее пространство.

Понятие о магнитном токе Бесконечно тонкая пластина, по которой протекает электрический ток. В близости он нее магнитные линии повторяют контуры проводника. При удалении от нее они постепенно превращаются в окружность.

Волны в коаксиальной линии

Построение чертежа